Skip to main content
Log in

Linear canonical Hankel domain based Stockwell transform and associated Heisenberg’s uncertainty principle

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

Linear canonical Hankel domain based Stockwell transform (LCHST) is the generalization of Hankel-Stockwell transform. In this paper, we propose the definition of LCHST and then obtain the classical results associated with the proposed transform. The crux of the paper lies in proving a sharp version of Heisenberg’s uncertainty principle for LCHST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The data is provided on the request to the authors.

References

  1. Cowling, M.G., and J.F. Price. 1984. Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality. SIAM Journal on Mathematical Analysis 15 (1): 151–164.

    Article  MathSciNet  Google Scholar 

  2. Price, J.F. 1983. Inequalities and local uncertainty principles. Journal of Mathematical Physics 24 (7): 1711–1713.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hleili, K. 2018. Uncertainty principles for spherical mean \(L^2\)-multiplier operators. Journal of Pseudo-Differential Operators and Applications 9 (3): 573–587.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hleili, K. 2020. Some results for the windowed Fourier transform related to the spherical mean operator. Acta Mathematica Vietnamica 2020: 1–24.

    MathSciNet  Google Scholar 

  5. Rösler, M. 1999. An uncertainty principle for the Dunkl transform. Bulletin of the Australian Mathematical Society 59 (3): 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  6. Banerjee, P.P., G. Nehmetallah, and M.R. Chatterjee. 2005. Numerical modeling of cylindrically symmetric nonlinear self-focusing using an adaptive fast Hankel split-step method. Optics Communications 249 (1–3): 293–300.

    Article  Google Scholar 

  7. Lohmann, A.W., D. Mendlovic, Z. Zalevsky, and R.G. Dorsch. 1996. Some important fractional transformations for signal processing. Optics Communications 125 (1–3): 18–20.

    Article  Google Scholar 

  8. Bowie, P.C. 1971. Uncertainty inequalities for Hankel transforms. SIAM Journal on Mathematical Analysis 2 (4): 601–606.

    Article  MathSciNet  MATH  Google Scholar 

  9. Omri, S. 2011. Logarithmic uncertainty principle for the Hankel transform. Integral Transforms and Special Functions 22 (9): 655–670.

    Article  MathSciNet  MATH  Google Scholar 

  10. Tuan, V.K. 2007. Uncertainty principles for the Hankel transform. Integral Transforms and Special Functions 18 (5): 369–381.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamadi, N.B., Z. Hafirassou, and H. Herch. 2020. Uncertainty principles for the Hankel-Stockwell transform. Journal of Pseudo-Differential Operators and Applications 11 (2): 543–563.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hleili K. 2021. A variety of uncertainty principles for the Hankel-Stockwell transform. Open Journal of Mathematical Analysis.

  13. Debnath, L. 2014. and Shah. Wavelet Transforms and Their Applications, Birkhäuser: F.A.

  14. Prasad, A., and Z.A. Ansari. 2018. Continuous Wavelet Transform Involving Linear Canonical Transform. India: The National Academy of Sciences.

    Google Scholar 

  15. Rösler, M., and M. Voit. 1999. An uncertainty principle for Hankel transforms. Proceedings of the American Mathematical Society 127: 183–194.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, R. 2008. Heisenberg uncertainty principle on Chébli-Trimèche hypergroups. Pacific Journal of Mathematics 235: 289–296.

    Article  MathSciNet  MATH  Google Scholar 

  17. Soltani, F. 2013. A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkel transform. Integral Transforms and Special Functions 24: 401–409.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bhat, M.Y., and A.H. Dar. 2021. Multiresolution analysis for linear canonical S transform. Advances in Operator Theory 6 (68).

  19. Bhat, M.Y., and A.H. Dar. 2021. Wavelet packets associated with linear canonical transform on spectrum. International Journal of Wavelets, Multiresolution and Information Processing 2150030.

  20. Bhat, M.Y., and A.H. Dar. 2023. Quaternion offset linear canonical transform in one-dimensional setting. The Journal of Analysis. https://doi.org/10.1007/s41478-023-00585-4.

  21. Bhat, M.Y., and A.H. Dar. 2023. Quadratic phase S-Transform: Properties and uncertainty principles. e-Prime - Advances in Electrical Engineering Electronics and Energy 4: 100162. https://doi.org/10.1016/j.prime.2023.100162.

    Article  Google Scholar 

  22. Bhat, M.Y., and A.H. Dar. 2023. Quaternion linear canonical S -transform and associated uncertainty principles. International Journal of Wavelets Multiresolution and Information Processing 21 (01). https://doi.org/10.1142/S0219691322500357.

  23. Dar, A.H., and M.Y. Bhat. 2022. Scaled ambiguity function and scaled Wigner distribution for LCT signals. Optik 267: 169678. https://doi.org/10.1016/j.ijleo.2022.169678.

    Article  Google Scholar 

  24. Bhat, M.Y., and A.H. Dar. 2023. The two‐sided short‐time quaternionic offset linear canonical transform and associated convolution and correlation. Mathematical Methods in the Applied Sciences 46 (8): 8478–8495. https://doi.org/10.1002/mma.8994.

  25. Dar, A.H., and M.Y. Bhat. 2023. Wigner distribution and associated uncertainty principles in the framework of octonion linear canonical transform. Optik 272: 170213. https://doi.org/10.1016/j.ijleo.2022.170213.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Grant (No. JKST &IC/SRE/J/357-60) provided by JKST &IC, UT of J& K, India.

Funding

No funding was received for this work

Author information

Authors and Affiliations

Authors

Contributions

Both the authors equally contributed towards this work.

Corresponding author

Correspondence to M. Younus Bhat.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, M.Y., Dar, A.H. Linear canonical Hankel domain based Stockwell transform and associated Heisenberg’s uncertainty principle. J Anal 31, 2985–3002 (2023). https://doi.org/10.1007/s41478-023-00624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00624-0

Keywords

Mathematics Subject Classification

Navigation