Skip to main content
Log in

Error estimates for the simplified iteratively regularized Gauss–Newton method under a general source condition

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

Recently George (J Inv Ill-posed Prob 18:133–146, 2010), Pradeep and Rajan (Int J Appl Comput Math 2:97–112, 2016) considered a two steps modified Gauss–Newton method for obtaining stable approximate solution for nonlinear ill-posed operator equation \(F(x)= y.\) They have obtained order optimal error estimates under suitable choices of stopping rules with appropriate choices of regularization parameters. One drawback of the regularization algorithms considered in the above mentioned references is their two steps nature, which requires both a suitable stopping rule and a suitable choice of continuous regularization parameter. To overcome this issue, we consider a simplified iteratively regularized Gauss–Newton method in which the sequence of iterates \(\{x_k^\delta \}\) is defined as

$$\begin{aligned} x_{k+1}^\delta = x_{k}^\delta - (\alpha _{k}I + A_{0}^*A_0)^{-1}(A_{0}^*(F(x_{k}^\delta ) - y^\delta ) + \alpha _{k}(x_{k}^\delta - x_0)), \end{aligned}$$

where \(\{\alpha _k\}\) is the decreasing sequence of positive real numbers such that \(\displaystyle \lim _{k \rightarrow \infty }\alpha _k = 0,\) \(y^\delta\) is a perturbed data, \(A_0 = F'(x_0)\) is the Fréchet derivative of F at \(x_0 \in D(F),\) \(A_{0}^*= F'(x_0)^*\) is the adjoint of \(F'(x_0)\) and \(x_{0}^\delta = x_0 \in D(F)\) is an initial guess. In this paper, we study the above defined method under a suitable a-posteriori stopping rule which yields an optimal error estimate with general form of source condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bakushinskii, A.B. 1992. The problem of the convergence of the iteratively regularized Gauss–Newton method. Computational Mathematics and Mathematical Physics 32: 1353–1359.

    MathSciNet  Google Scholar 

  2. Blaschke, B., A. Neubauer, and O. Scherzer. 1997. On convergence rates for the iteratively regularized Gauss–Newton method. IMA Journal of Numerical Analysis 17: 421–436.

    Article  MathSciNet  MATH  Google Scholar 

  3. Colonius, F., and K. Kunish. 1986. Stability for parameter estimation in two point boundary value problems. The Journal fur die Rine und Angewandte Mathematik 370: 1–29.

    MathSciNet  Google Scholar 

  4. Colonius, F., and K. Kunish. 1989. Output least squares stability in elliptic systems. The Applied Mathematics and Optimization 19: 33–63.

    Article  MathSciNet  MATH  Google Scholar 

  5. Engl, H.W., K. Kunish, and A. Neubauer. 1989. Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Problems 5: 523–540.

    Article  MathSciNet  MATH  Google Scholar 

  6. Engl, H.W., M. Hanke, and A. Neubauer. 1996. Regularization of Inverse Problems. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  7. George, S. 2010. On conversence of regularized modified Newton’s method for nonlinear ill-posed problems. Journal of Inverse and Ill-posed Problems 18: 133–146.

    Article  MathSciNet  MATH  Google Scholar 

  8. Groetsch, C.W. 1983. Comments on Morozov’s discrepancy principle. In Improperly Posed Problems and Their Numerical Treatment, ed. G. Hämmerlin and K.H. Hoffmann, 97–104. Basel: Birkhäuser.

    Chapter  Google Scholar 

  9. Hohage, T. 1997. Logarithmic convergence rates of the iteratively regularized Gauss Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13 (5): 1279–1299.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hohage T: Iterative methods in inverse obstacle obstacle scattering: Regularization Theory of linear and nonlinear exponentially ill-posed problems, Ph.d. Thesis, University of Linz, 1999.

  11. Hohage, T. 2000. Regularization of exponentially ill-posed problem. Numerical Functional Analysis and Optimization 21 (3–4): 439–464.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, Q. 2000. On the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed problems. Mathematics of Computation 69 (232): 1603–1623.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, Q. 2010. On a class of frozen regularized Gauss–Newton methods for nonlinear inverse problems. Mathematics of Computation 79: 2191–2211.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, Q. 2010. On a regularized Levenberg–Marquardt method for solving nonlinear inverse problems. Numerische Mathematik 115: 229–259.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, Q., and Z.Y. Hou. 1999. On an a posteriori parameter choice strategy for Tikhnov regularization of nonlinear ill-posed problems. Numerische Mathematik 83: 139–159.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, Q., and U. Tautenhahn. 2009. On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems. Numerische Mathematik 111: 509–558.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, Q., and M. Zhong. 2013. On the iteratively regularized Gauss–Newton method in Banach spaces with applications to parameter identification problems. Numerische Mathematik 124: 647–683.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaltenbacher, B. 1998. A Posteriori parameter choice strategies for some Newton type methods for the regularization of nonlinear ill-posed problems. Numerische Mathematik 79: 501–528.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaltenbacher, B. 1998. On Broyden’s method for the regularization of nonlinear ill-posed problems. Numerical Functional Analysis and Optimization 19: 807–833.

    Article  MathSciNet  MATH  Google Scholar 

  20. Langer, S., and T. Hohage. 2007. Convergence analysis of an inexact iteratively regulaized Gauss–Newton method under general source condition. Journal of Inverse and Ill-Posed Problems 15 (3): 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  21. Mahale, P. 2015. Generalized Gauss–Newton iterative method under morozov type stopping rule. Numerical Functional Analysis and Optimization 36 (11): 1448–1470.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahale, P. 2017. Simplified iterated Laverentiev regularization for nonlinear ill-posed monotone operator equations. Computational Methods in Applied Mathematics 17 (2): 269–285. https://doi.org/10.1515/cmam-2016-0044 (ISSN (Online) 1609-9389, ISSN (Print) 1609-4840).

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahale, P., and S.K. Dixit. 2018. Convergence analysis of simplified iteratively regularized Gauss–Newton method in a Banach space setting. Applied Analysis 97 (15): 2686–2719.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mahale, P., and M.T. Nair. 2007. General source conditions for nonlinear ill-posed problems. Numerical Functional Analysis and Optimization 28 (1, 2): 111–126.

    Article  MathSciNet  MATH  Google Scholar 

  25. Mahale, P., and M.T. Nair. 2009. A simplified generalized Gauss–Newton method for nonlinear ill-posed problems. Mathematics of Computation 78: 171–184.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mahale, P., and M.T. Nair. 2013. Lavrentiev regularization of nonlinear ill-Posed Equations under general source condition. Journal of Nonlinear Analysis and Optimization 4 (2): 193–204.

    MathSciNet  MATH  Google Scholar 

  27. Nair M. T.: 2009. Linear Operator Equations Approximation and Regularization, World Scientific

  28. Nair, M.T. 2021. Functional Analysis : A First Course, 2nd ed. New Delhi: PHI Learning private limited.

    Google Scholar 

  29. Nair, M.T., and U. Tautenhahn. 2004. Lavrentiev regularization for linear illposed problems under general source conditions. Journal for Analysis and its Application 23 (1): 167–185.

    MATH  Google Scholar 

  30. Nair, M.T., E. Schock, and U. Tautenhahn. 2003. Morozov’s discepancy principle under general source condition. Zeitschrift für Analysis und ihre Anwendungen 22 (1): 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  31. Nair, M.T., S. Pereverzev, and U. Tautenhahn. 2005. Regularization in Hilbert scales under general smoothing conditions. Inverse Problems 21 (6): 1851–1869.

    Article  MathSciNet  MATH  Google Scholar 

  32. Pradeep, D., and M.P. Rajan. 2016. A simplified Gauss–Newton iterative scheme with an a posteriori parameter choice rule for solving nonlinear ill-posed problems. International Journal of Applied and Computational Mathematics 2: 97–112.

    Article  MathSciNet  MATH  Google Scholar 

  33. Scherzer, O., H.W. Engl, and K. Kunisch. 1993. Optimal a posteriori parameter choice for Tikhnov regularization of nonlinear ill-posed problems, SIAM. Journal on Numerical Analysis 30: 1796–1838.

    Article  MATH  Google Scholar 

  34. Schock E : Approximate solution of ill-posed equations: arbitrary slow convergence vs. superconvergence, In: G. Hämmerlin and K. H. Hofmann, eds., Constructive Methods for the Practical Treatment of Integral Equations, Basel: Birkhäuser, 1985, 234–243.

Download references

Acknowledgements

The first author acknowledges the National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India for the support for the work through the project Grant No. 2/11/42/2017/NBHM(R.P.)/ R& D II/ 534 dated January 10, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Mahale.

Additional information

Communicated by Samy Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahale, P., Singh, A. & Kumar, A. Error estimates for the simplified iteratively regularized Gauss–Newton method under a general source condition. J Anal 31, 295–328 (2023). https://doi.org/10.1007/s41478-022-00454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-022-00454-6

Keywords

Mathematics Subject Classifications

Navigation