Skip to main content

Hilbert modules characterization for weak hyperrigid operator systems

Abstract

A characterization of weak hyperrigidity for certain separable operator systems in \(W^*\)-algebras in terms of the orthogonality properties of Hilbert modules over operator algebras is established.

This is a preview of subscription content, access via your institution.

References

  1. Arveson, W.B. 1969. Subalgebras of \(C^{*}\)-algebras. Acta Mathematica 123: 141–224.

    Article  MathSciNet  Google Scholar 

  2. Arveson, W.B. 1972. Subalgebras of \(C^*\)-algebras II. Acta Mathematica 128: 271–308.

    Article  MathSciNet  Google Scholar 

  3. Arveson, W.B. 2011. The noncommutative Choquet boundary II: Hyperrigidity. Israel Journal of Mathematics 184: 349–385.

    Article  MathSciNet  Google Scholar 

  4. Korovkin, P.P. 1960. Linear operators and approximation theory. Delhi: Hindustan.

    Google Scholar 

  5. Muhly, P., and B. Solel. 1995. Hilbert modules over operator algebras, Mem. Amer. Math. Soc., vol. 117. Providence: Amer. Math. Soc.

  6. Muhly, P., and B. Solel. 1998. An algebraic characterization of boundary representations. In Nonselfadjoint operator algebras, operator theory, and related topics, Oper. Theory Adv. Appl., vol. 104, 189–196. Basel: Birkhauser.

  7. Limaye, B.V., and M.N.N. Namboodiri. 1984. Weak Korovkin approximation by completely positive linear maps on \(B(H)\). Journal of Approximation Theory 42 (3): 201–211.

    Article  MathSciNet  Google Scholar 

  8. Namboodiri, M.N.N. 2012. Geometric theory of weak Korovkin sets. Operators and Matrices 6 (2): 271–278.

    Article  MathSciNet  Google Scholar 

  9. Namboodiri, M.N.N., S. Pramod, P. Shankar, and A.K. Vijayarajan. 2018. Quasi hyperrigidity and weak peak points for non-commutative operator systems. Proceedings of the Indian Academy of Sciences: Mathematical Sciences 128 (5): 66.

    MathSciNet  MATH  Google Scholar 

  10. Sarason, D. 1965. On spectral sets having connected complement. Acta Scientiarum Mathematicarum (Szeged) 2 (6): 289–299.

    MathSciNet  MATH  Google Scholar 

  11. Saskin, Y.A. 1966. Korovkin systems in spaces of continuous functions. American Mathematical Society Translations 54 (2): 125–144.

    Article  Google Scholar 

  12. Shankar, P., and A.K. Vijayarajan. 2017. Hyperrigid operator systems and Hilbert modules. Annals of Functional Analysis 8 (1): 133–141.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author thanks the National Board for Higher Mathematics (NBHM), India, for providing financial support to carry his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shankar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shankar, P., Vijayarajan, A.K. Hilbert modules characterization for weak hyperrigid operator systems. J Anal 28, 905–912 (2020). https://doi.org/10.1007/s41478-020-00220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-020-00220-6

Keywords

  • Operator system
  • \(W^*\)-algebra
  • Weak hyperrigid set
  • Hilbert module

Mathematics Subject Classification

  • 46L07
  • 46L52
  • 46L89