Skip to main content
Log in

Spectrum and related sets: a survey

  • S.I.: ICWAA-2018
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In order to understand the behaviour of a square matrix or a bounded linear operator on a Banach space or more generally an element of a Banach algebra, some subsets of the complex plane are associated with such an object. Most popular among these sets is the spectrum \(\sigma (a) \) of an element a in a complex unital Banach algebra A with unit 1 defined as follows:

$$\begin{aligned} \sigma (a) := \{\lambda \in \mathbb {C}: \lambda - a \,\, \text{ is } \text{ not } \text{ invertible } \text{ in }\, A\}. \end{aligned}$$

Here and also in what follows, we identify \(\lambda .1\) with \(\lambda \). Also quite popular is Numerical range V(a) of a. This is defined as follows:

$$\begin{aligned} V(a) := \{ \phi (a): \phi \,\, \text{ is } \text{ a } \text{ continuous } \text{ linear } \text{ functional } \text{ on } \,\, A \, \, \text{ satisfying } \, \, \Vert \phi \Vert = 1 = \phi (1) \}. \end{aligned}$$

Then there are many generalizations, modifications, approximations etc. of the spectrum. Let \(\epsilon > 0\) and n a nonnegative integer. These include \(\epsilon -\) condition spectrum \(\sigma _{\epsilon }(a)\), \(\epsilon -\)pseudospectrum \(\Lambda _{\epsilon }(a)\) and \((n, \epsilon )-\)pseudospectrum \(\Lambda _{n, \epsilon }(a)\). These are defined as follows:

$$\begin{aligned} \sigma _{\epsilon }(a) := \left\{ \lambda \in \mathbb {C}: \Vert \lambda - a\Vert \Vert (\lambda -a)^{-1}\Vert \ge \frac{1}{\epsilon } \right\} \end{aligned}$$

In this and the following definitions we follow the convention : \( \Vert (\lambda -a)^{-1}\Vert = \infty \) if \(\lambda - a\) is not invertible.

$$\begin{aligned}&\Lambda _{\epsilon }(a) := \left\{ \lambda \in \mathbb {C}: \Vert (\lambda -a)^{-1}\Vert \ge \frac{1}{\epsilon } \right\} \\&\Lambda _{n, \epsilon }(a) := \left\{ \lambda \in \mathbb {C}: \Vert (\lambda -a)^{-2^n}\Vert ^{ 1/2^n } \ge \frac{1}{\epsilon } \right\}. \end{aligned}$$

In this survey article, we shall review some basic properties of these sets, relations among these sets and also discuss the effects of perturbations on these sets and the question of determining the properties of the element a from the knowledge of these sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson, W. 1994. \(C^*\)-algebras and numerical linear algebra. Journal of Functional Analysis 122 (2): 333–360.

    Article  MathSciNet  Google Scholar 

  2. Badea, Cătălin. 1991. The Gleason–Kahane–Żelazko theorem and Ransford’s generalised spectra. Comptes rendus de l’Academie des sciences. Serie 1, Mathematique 313 (10): 679–683.

    MATH  Google Scholar 

  3. Bonsall, Frank F., and John Duncan. 1973. Complete normed algebras. New York: Springer-Verlag.

    Book  Google Scholar 

  4. Böttcher, A., and B. Silbermann. 1999. Introduction to large truncated Toeplitz matrices. New York: Springer.

    Book  Google Scholar 

  5. Douglas, R.G. 1998. Banach algebra techniques in operator theory, Graduate Texts in Mathematics, vol. 179, 2nd ed. New York: Springer.

    Book  Google Scholar 

  6. Dhara, K., and S.H. Kulkarni. 2018. The \((n, \epsilon )\)-pseudospectrum of an element of a Banach algebra. Journal of Mathematical Analysis and Applications 464 (1): 939–954.

    Article  MathSciNet  Google Scholar 

  7. Dhara, K., S.H. Kulkarni, and Markus Seidel. 2019. Continuity of the -pseudospectrum of an element of a Banach algebra. Integral Equations Operator Theory 91 (4): 32. https://doi.org/10.1007/s00020-019-2530-6.

    Article  MATH  Google Scholar 

  8. Dhara, K., and S. H. Kulkarni. 2019. The \((n, \epsilon )\)-pseudospectrum of an element of a reduced Banach algebra. Advances in Operator Theory, pp. 1–13.

  9. Globevnik, J. 1975. On complex strict and uniform convexity. Proceedings of the American Mathematical Society 47: 175–178.

    Article  MathSciNet  Google Scholar 

  10. Hagen, R., S. Roch, and B. Silbermann. 2001. C* -algebras and numerical analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 236. New York: Marcel Dekker Inc.

    MATH  Google Scholar 

  11. Hansen, A.C. 2008. On the approximation of spectra of linear operators on Hilbert spaces. Journal of Functional Analysis 254 (8): 2092–2126.

    Article  MathSciNet  Google Scholar 

  12. Hansen, A.C. 2010. Infinite-dimensional numerical linear algebra: theory and applications. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2124): 3539–3559.

    Article  MathSciNet  Google Scholar 

  13. Hansen, A. C., and O. Nevanlinna, Complexity issues in computing spectra, pseudospectra and resolvents, in Études opératorielles, 171–194, Banach Center Publ., 112, Polish Acad. Sci. Inst. Math., Warsaw.

  14. Krishnan, A., and S.H. Kulkarni. 2017. Pseudospectrum of an element of a Banach algebra. Operation Matrices 11 (1): 263–287.

    Article  MathSciNet  Google Scholar 

  15. Krishnan, A., and S.H. Kulkarni. 2017. Pseudospectra of elements of reduced Banach algebras. Advances in Operator Theory 2 (4): 475–493.

    MathSciNet  MATH  Google Scholar 

  16. Krishnan, A., and S.H. Kulkarni. 2018. Pseudospectra of elements of reduced Banach algebras II. Functional Analysis of Approximate Computation 10 (2): 33–45.

    MathSciNet  MATH  Google Scholar 

  17. Kulkarni, S.H., and D. Sukumar. 2005. Gleason-Kahane-Żelazko theorem for spectrally bounded algebra. International Journal of Mathematics and Mathematical Sciences 2005 (15): 2447–2460.

    Article  Google Scholar 

  18. Kulkarni, S.H., and D. Sukumar. 2008. The condition spectrum. Acta Science Mathematics (Szeged) 74 (3–4): 625–641.

    MathSciNet  MATH  Google Scholar 

  19. Kumar, G.K., and S.H. Kulkarni. 2012. Linear maps preserving pseudospectrum and condition spectrum. Banach Journal of Mathematical Analysis 6 (1): 45–60.

    Article  MathSciNet  Google Scholar 

  20. Kumar, G. Krishna, and S. H. Kulkarni, An analogue of the spectral mapping theorem for condition spectrum, in Concrete operators, spectral theory, operators in harmonic analysis and approximation, 299–316, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel.

  21. Kumar, G.K., and S.H. Kulkarni. 2015. Banach algebra techniques to compute spectra, pseudospectra and condition spectra of some block operators with continuous symbols. Annals of Functional Analysis 6 (1): 148–169.

    Article  MathSciNet  Google Scholar 

  22. Sukumar, D., and S. Veeramani. 2017. Level sets of the condition spectrum. Annals of Functional Analysis 8 (3): 314–328.

    Article  MathSciNet  Google Scholar 

  23. Lui, S.-H. 2003. A pseudospectral mapping theorem. Mathematics Computational 72 (244): 1841–1854.

    Article  MathSciNet  Google Scholar 

  24. Molnár, L. 2007. Selected preserver problems on algebraic structures of linear operators and on function spaces. Lecture Notes in Mathematics, vol. 1895. Berlin: Springer.

    MATH  Google Scholar 

  25. Palmer, Theodore W. 1994. Banach algebras and the general theorey of *-algebras, vol. 1, 1st ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  26. Putnam, C.R. 1973. Almost normal operators, their spectra and invariant subspaces. Bulletin of the American Mathematical Society 79: 615–624.

    Article  MathSciNet  Google Scholar 

  27. Putnam, C.R. 1979. Operators satisfying a \(G_{1}\) condition. Pacific Journal of Mathematics 84 (2): 413–426.

    Article  MathSciNet  Google Scholar 

  28. Ransford, T.J. 1984. Generalised spectra and analytic multivalued functions. Journal of the London Mathematical Society 29 (2): 306–322.

    Article  MathSciNet  Google Scholar 

  29. Seidel, M. 2012. On \((N,\epsilon )\)-pseudospectra of operators on Banach spaces. Journal of Functional Analysis 262 (11): 4916–4927.

    Article  MathSciNet  Google Scholar 

  30. Shargorodsky, E. 2008. On the level sets of the resolvent norm of a linear operator. Bulletin of the London Mathematical Society 40 (3): 493–504.

    Article  MathSciNet  Google Scholar 

  31. Shargorodsky, E. 2009. On the definition of pseudospectra. Bulletin of the London Mathematical Society 41 (3): 524–534.

    Article  MathSciNet  Google Scholar 

  32. Trefethen, L.N., and M. Embree. 2005. Spectra and pseudospectra The Behavior of Nonnormal Matrices and Operators. Princeton, NJ: Princeton Univ. Press.

    Book  Google Scholar 

  33. The web site: PEUDOSPECTRA GATEWAY. http://www.cs.ox.ac.uk/pseudospectra/index.html

Download references

Funding

No agency was approached for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Kulkarni.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interst with anybody.

Human and animal participations

The article does not contain any studies with human participants or animals performed by anybody.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S.H. Spectrum and related sets: a survey. J Anal 29, 493–517 (2021). https://doi.org/10.1007/s41478-019-00214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-019-00214-z

Keywords

Mathematics Subject Classification

Navigation