Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

# Spectrum and related sets: a survey

• 17 Accesses

## Abstract

In order to understand the behaviour of a square matrix or a bounded linear operator on a Banach space or more generally an element of a Banach algebra, some subsets of the complex plane are associated with such an object. Most popular among these sets is the spectrum $$\sigma (a)$$ of an element a in a complex unital Banach algebra A with unit 1 defined as follows:

\begin{aligned} \sigma (a) := \{\lambda \in \mathbb {C}: \lambda - a \,\, \text{ is } \text{ not } \text{ invertible } \text{ in }\, A\}. \end{aligned}

Here and also in what follows, we identify $$\lambda .1$$ with $$\lambda$$. Also quite popular is Numerical range V(a) of a. This is defined as follows:

\begin{aligned} V(a) := \{ \phi (a): \phi \,\, \text{ is } \text{ a } \text{ continuous } \text{ linear } \text{ functional } \text{ on } \,\, A \, \, \text{ satisfying } \, \, \Vert \phi \Vert = 1 = \phi (1) \}. \end{aligned}

Then there are many generalizations, modifications, approximations etc. of the spectrum. Let $$\epsilon > 0$$ and n a nonnegative integer. These include $$\epsilon -$$ condition spectrum $$\sigma _{\epsilon }(a)$$, $$\epsilon -$$pseudospectrum $$\Lambda _{\epsilon }(a)$$ and $$(n, \epsilon )-$$pseudospectrum $$\Lambda _{n, \epsilon }(a)$$. These are defined as follows:

\begin{aligned} \sigma _{\epsilon }(a) := \left\{ \lambda \in \mathbb {C}: \Vert \lambda - a\Vert \Vert (\lambda -a)^{-1}\Vert \ge \frac{1}{\epsilon } \right\} \end{aligned}

In this and the following definitions we follow the convention : $$\Vert (\lambda -a)^{-1}\Vert = \infty$$ if $$\lambda - a$$ is not invertible.

\begin{aligned}&\Lambda _{\epsilon }(a) := \left\{ \lambda \in \mathbb {C}: \Vert (\lambda -a)^{-1}\Vert \ge \frac{1}{\epsilon } \right\} \\&\Lambda _{n, \epsilon }(a) := \left\{ \lambda \in \mathbb {C}: \Vert (\lambda -a)^{-2^n}\Vert ^{ 1/2^n } \ge \frac{1}{\epsilon } \right\}. \end{aligned}

In this survey article, we shall review some basic properties of these sets, relations among these sets and also discuss the effects of perturbations on these sets and the question of determining the properties of the element a from the knowledge of these sets.

This is a preview of subscription content, log in to check access.

## References

1. 1.

Arveson, W. 1994. $$C^*$$-algebras and numerical linear algebra. Journal of Functional Analysis 122 (2): 333–360.

2. 2.

Badea, Cătălin. 1991. The Gleason–Kahane–Żelazko theorem and Ransford’s generalised spectra. Comptes rendus de l’Academie des sciences. Serie 1, Mathematique 313 (10): 679–683.

3. 3.

Bonsall, Frank F., and John Duncan. 1973. Complete normed algebras. New York: Springer-Verlag.

4. 4.

Böttcher, A., and B. Silbermann. 1999. Introduction to large truncated Toeplitz matrices. New York: Springer.

5. 5.

Douglas, R.G. 1998. Banach algebra techniques in operator theory, Graduate Texts in Mathematics, vol. 179, 2nd ed. New York: Springer.

6. 6.

Dhara, K., and S.H. Kulkarni. 2018. The $$(n, \epsilon )$$-pseudospectrum of an element of a Banach algebra. Journal of Mathematical Analysis and Applications 464 (1): 939–954.

7. 7.

Dhara, K., S.H. Kulkarni, and Markus Seidel. 2019. Continuity of the -pseudospectrum of an element of a Banach algebra. Integral Equations Operator Theory 91 (4): 32. https://doi.org/10.1007/s00020-019-2530-6.

8. 8.

Dhara, K., and S. H. Kulkarni. 2019. The $$(n, \epsilon )$$-pseudospectrum of an element of a reduced Banach algebra. Advances in Operator Theory, pp. 1–13.

9. 9.

Globevnik, J. 1975. On complex strict and uniform convexity. Proceedings of the American Mathematical Society 47: 175–178.

10. 10.

Hagen, R., S. Roch, and B. Silbermann. 2001. C* -algebras and numerical analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 236. New York: Marcel Dekker Inc.

11. 11.

Hansen, A.C. 2008. On the approximation of spectra of linear operators on Hilbert spaces. Journal of Functional Analysis 254 (8): 2092–2126.

12. 12.

Hansen, A.C. 2010. Infinite-dimensional numerical linear algebra: theory and applications. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2124): 3539–3559.

13. 13.

Hansen, A. C., and O. Nevanlinna, Complexity issues in computing spectra, pseudospectra and resolvents, in Études opératorielles, 171–194, Banach Center Publ., 112, Polish Acad. Sci. Inst. Math., Warsaw.

14. 14.

Krishnan, A., and S.H. Kulkarni. 2017. Pseudospectrum of an element of a Banach algebra. Operation Matrices 11 (1): 263–287.

15. 15.

Krishnan, A., and S.H. Kulkarni. 2017. Pseudospectra of elements of reduced Banach algebras. Advances in Operator Theory 2 (4): 475–493.

16. 16.

Krishnan, A., and S.H. Kulkarni. 2018. Pseudospectra of elements of reduced Banach algebras II. Functional Analysis of Approximate Computation 10 (2): 33–45.

17. 17.

Kulkarni, S.H., and D. Sukumar. 2005. Gleason-Kahane-Żelazko theorem for spectrally bounded algebra. International Journal of Mathematics and Mathematical Sciences 2005 (15): 2447–2460.

18. 18.

Kulkarni, S.H., and D. Sukumar. 2008. The condition spectrum. Acta Science Mathematics (Szeged) 74 (3–4): 625–641.

19. 19.

Kumar, G.K., and S.H. Kulkarni. 2012. Linear maps preserving pseudospectrum and condition spectrum. Banach Journal of Mathematical Analysis 6 (1): 45–60.

20. 20.

Kumar, G. Krishna, and S. H. Kulkarni, An analogue of the spectral mapping theorem for condition spectrum, in Concrete operators, spectral theory, operators in harmonic analysis and approximation, 299–316, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel.

21. 21.

Kumar, G.K., and S.H. Kulkarni. 2015. Banach algebra techniques to compute spectra, pseudospectra and condition spectra of some block operators with continuous symbols. Annals of Functional Analysis 6 (1): 148–169.

22. 22.

Sukumar, D., and S. Veeramani. 2017. Level sets of the condition spectrum. Annals of Functional Analysis 8 (3): 314–328.

23. 23.

Lui, S.-H. 2003. A pseudospectral mapping theorem. Mathematics Computational 72 (244): 1841–1854.

24. 24.

Molnár, L. 2007. Selected preserver problems on algebraic structures of linear operators and on function spaces. Lecture Notes in Mathematics, vol. 1895. Berlin: Springer.

25. 25.

Palmer, Theodore W. 1994. Banach algebras and the general theorey of *-algebras, vol. 1, 1st ed. Cambridge: Cambridge University Press.

26. 26.

Putnam, C.R. 1973. Almost normal operators, their spectra and invariant subspaces. Bulletin of the American Mathematical Society 79: 615–624.

27. 27.

Putnam, C.R. 1979. Operators satisfying a $$G_{1}$$ condition. Pacific Journal of Mathematics 84 (2): 413–426.

28. 28.

Ransford, T.J. 1984. Generalised spectra and analytic multivalued functions. Journal of the London Mathematical Society 29 (2): 306–322.

29. 29.

Seidel, M. 2012. On $$(N,\epsilon )$$-pseudospectra of operators on Banach spaces. Journal of Functional Analysis 262 (11): 4916–4927.

30. 30.

Shargorodsky, E. 2008. On the level sets of the resolvent norm of a linear operator. Bulletin of the London Mathematical Society 40 (3): 493–504.

31. 31.

Shargorodsky, E. 2009. On the definition of pseudospectra. Bulletin of the London Mathematical Society 41 (3): 524–534.

32. 32.

Trefethen, L.N., and M. Embree. 2005. Spectra and pseudospectra The Behavior of Nonnormal Matrices and Operators. Princeton, NJ: Princeton Univ. Press.

33. 33.

The web site: PEUDOSPECTRA GATEWAY. http://www.cs.ox.ac.uk/pseudospectra/index.html

## Funding

No agency was approached for funding this study.

## Author information

Correspondence to S. H. Kulkarni.

## Ethics declarations

### Conflicts of interest

The author declares that there is no conflict of interst with anybody.

### Human and animal participations

The article does not contain any studies with human participants or animals performed by anybody.

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Reprints and Permissions

Kulkarni, S.H. Spectrum and related sets: a survey. J Anal (2019). https://doi.org/10.1007/s41478-019-00214-z

• Accepted:

• Published:

### Keywords

• Completeness
• Invertibility
• Transpose
• Bounded below
• Spectrum

• 46B99
• 47A05