The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations


In this paper, we define the generalized p-k-Mittag-Leffler function and investigate its various important properties such as: Mellin-Barnes integral formula, integral transforms, and fractional calculus. The generalized p-k-Mittag-Leffler function is also discussed in terms of the solution of fractional kinetic equations. Certain interesting and useful examples are considered as special cases of generalized p-k-MLF to give the applications of our main results. We also point out their relevance with known results.

This is a preview of subscription content, log in to check access.


  1. 1.

    Agarwal, P., M. Chand, D. Baleanu, D. O’Regan, and S. Jain. 2018. On the solution of certain fractional kinetic equations involving k-Mittag-Leffler function. Advances in Differential Equations 1–13.

  2. 2.

    Agarwal, P. and J. Nieto. 2017. Some fractional integral formulas for the Mittag-Leffler type function with four parameters. Open Mathematics.

  3. 3.

    Agarwal, P., S.K. Ntouyas, S. Jain, M. Chand, and G. Singh. 2017. Fractional kinetic equations involving genralized \(k\)-Bessel function via Sumudu transform. Alexndria Engineering Journal 1-6.

  4. 4.

    Ahmed, S. 2014. On the generalized fractional integrals of the generalized Mittag-Leffler function. Springer Plus 3: 1–5.

    Article  Google Scholar 

  5. 5.

    Chand, M., J.C. Prajaptai, and E. Bonyah. 2017. Fractional integral and solution of fractional kinetic equations involving k-Mittag-Leffler function. Transaction of A Razmadze Mathematical Institute 171: 144–166.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Choi, J., and D. Kumar. 2015. Solution of generalized fractional kinetic equations involving Alpha function. Mathematical Communication 20: 113–123.

    MATH  Google Scholar 

  7. 7.

    Fox, C. 1961. The G and H functions as symmetrical Fourier kernels. Transactions of the American Mathematical Society 98: 395–429.

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Gehlot, K.S. 2017. Two parameter gamma function and it’s properties. 1-7. article ID: arXiv:1701.01052 [math.CA].

  9. 9.

    Haubold, H.J., and A.M. Mathai. 2000. The fractional kinetic equation and thermonuclear functions. Astrophysics Space Science 327: 53–63.

    Article  Google Scholar 

  10. 10.

    Khan, N.U., T. Usman, and M. Ghasuddin. 2016. Some integral associated with multiindex Mittag-Leffler functions. Journal of Applied Mathematics and Informatics 34 (3): 249–255.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kilbas, A.A., and N. Sebstian. 2008. Generalized fractional integration of Bessel function of the first kind. Integral Transforms and Special Functions 19 (12): 869–883.

    MathSciNet  Article  Google Scholar 

  12. 12.

    Luchko, Y., H. Martinez, and J. Trujillo. 2008. Fractional Fourier transform and some of its applications. Fractional Calculus and Applied Analysis 11 (4): 457–470.

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Mathai, A.M., and R.K. Saxana. 2010. Generalized hypergeometric functions with applications. New York: Springer.

    Google Scholar 

  14. 14.

    Nisar, K.S., S.D. Purohit, and S.R. Mondal. 2016. Generalized fractional kinetic equations involving generalized Struve function of the first kind. Journal of King Saud University-Sciences 28: 167–171.

    Article  Google Scholar 

  15. 15.

    Pathak, R.S. 1966. Certain convergence theorems and asymptotic properties of a generalized of Lomel and maitland transformations. Proceedings of the National Academy of Sciences India A–36 (1): 81–86.

    Google Scholar 

  16. 16.

    Romero, L., R. Cerutti, and L. Luque. 2011. A new fractional Fourier transform and convolutions products. International Journal of Pure and Applied Mathematics 66: 397–408.

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Saichev, A.I., and G. Zaslavsky. 1997. Fractional kinetic equations; solutions and applications. Chaos 7 (4): 753–764.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Saigo, M. 1978. A remark on integral operators involving the gauss hypergeometric functions. Mathematical Reports 11: 135–143.

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Saxana, R.K., J. Daiya, and A. Singh. 2014. Integral transform of the k-generalized Mittag-Leffler function \(E_{k,\alpha ,\beta }^{\gamma ,\tau }(z)\). LE MATHEMATIC HE LXIX: 7-16.

  20. 20.

    Saxena, R.K., and S.L. Kalla. 2008. On the solutions of certain fractional kinetic equations. Applied Mathematics and Computation 199: 504–511.

    MathSciNet  Article  Google Scholar 

  21. 21.

    Shukla, A.K., and J.C. Prajapati. 2007. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications 336 (2): 797–811.

    MathSciNet  Article  Google Scholar 

  22. 22.

    Sneddon, I.N. 1979. The use of integral transforms. New York: Tata McGraw-Hill.

    Google Scholar 

  23. 23.

    Spiegel, M.R. 1965. Theory and problem of Laplace transforms, Schums Outline Series. New york: McGraw-Hill.

    Google Scholar 

  24. 24.

    Srivastava, H.M., and P.W. Karlsson. 1985. Multiple Gaussian Hypergeometric Series, Halsted Press(Ellis Horwood Limited, Chichester). New York: Wiley.

    Google Scholar 

  25. 25.

    Wiman, A. 1905. Uber den fundamental satz in der theorie der funktionen \(E_{\alpha }(x)\). Acta Mathematica 29 (1): 191–201.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Owais Khan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamarujjama, M., Khan, N.U. & Khan, O. The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations. J Anal 27, 1029–1046 (2019).

Download citation


  • Integral transforms
  • Fractional calculus
  • Fox-Wright function
  • Generalized Mittag-Leffler function
  • Fractional kinetic equations

Mathematics Subject Classification

  • 42A38
  • 26A33
  • 33E12
  • 33C20