From Quantum Axiomatics to Quantum Conceptuality

Abstract

Since its inception, many physicists have seen in quantum mechanics the possibility, if not the necessity, of bringing cognitive aspects into the play, which were instead absent, or unnoticed, in the previous classical theories. In this article, we outline the path that led us to support the hypothesis that our physical reality is fundamentally conceptual-like and cognitivistic-like. However, contrary to the “abstract ego hypothesis” introduced by John von Neumann and further explored, in more recent times, by Henry Stapp, our approach does not rely on the measurement problem as expressing a possible “gap in physical causation,” which would point to a reality lying beyond the mind-matter distinction. On the contrary, in our approach, the measurement problem is considered to be essentially solved, at least for what concerns the origin of quantum probabilities, which we have reasons to believe they would be epistemic. Our conclusion that conceptuality and cognition would be an integral part of all physical processes comes instead from the observation of the striking similarities between the non-spatial behavior of the quantum micro-physical entities and that of the human concepts. This gave birth to a new interpretation of quantum mechanics, called the “conceptuality interpretation,” currently under investigation within our group in Brussels.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    Regarding this free choice aspect, Stapp (2009) writes: This choice is sometimes called the “Heisenberg choice,” because Heisenberg emphasized strongly its crucial role in quantum dynamics. At the pragmatic level it is a “free choice,” because it is controlled, at least at the practical level, by the conscious intentions of the experimenter/participant: neither the Copenhagen nor von Neumann formulations specify the causal origins of this choice, apart from the conscious intentions of the human agent.

References

  1. Aerts, D. (1982). Description of many physical entities without the paradoxes encountered in quantum mechanics. Foundations of Physics, 12, 1131–1170.

    Article  Google Scholar 

  2. Aerts, D. (1984). The missing elements of reality in the description of quantum mechanics of the EPR paradox situation. Helvetica Physica Acta, 57, 421–428.

    Google Scholar 

  3. Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics, 27, 202–210.

    Article  Google Scholar 

  4. Aerts, D. (1998). The entity and modern physics: the creation discovery view of reality. In E. Castellani (Ed.) , Interpreting bodies: classical and quantum objects in modern physics (pp. 223–257). Princeton: Princeton Unversity Press.

  5. Aerts, D. (1999a). Foundations of quantum physics: a general realistic and operational approach. International Journal of Theoretical Physics, 38, 289–358.

    Article  Google Scholar 

  6. Aerts, D. (1999b). The stuff the world is made of: physics and reality. In D. Aerts, J. Broekaert, E. Mathijs (Eds.) , Einstein meets Magritte: an interdisciplinary reflection (pp. 129–183). Dordrecht: Springer.

  7. Aerts, D. (2009). Quantum particles as conceptual entities: a possible explanatory framework for quantum theory. Foundations of Science, 14, 361–411.

    Article  Google Scholar 

  8. Aerts, D. (2010a). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics, 49, 2950–2970.

    Article  Google Scholar 

  9. Aerts, D. (2010b). A potentiality and conceptuality interpretation of quantum physics. Philosophica, 83, 15–52.

    Google Scholar 

  10. Aerts, D. (2013). La mecánica cuántica y la conceptualidad: Sobre materia, historias, semántica y espacio-tiempo. Scientiae Studia, 11, 75–100. Translated from: Aerts, D. (2011). Quantum theory and conceptuality: matter, stories, semantics and space-time. arXiv:1110.4766 [quant-ph].

    Article  Google Scholar 

  11. Aerts, D. (2014). Quantum theory and human perception of the macro-world. Frontiers in Psychology, 5, Article 554.

    Article  PubMed  Google Scholar 

  12. Aerts, D., & Aerts, S. (1995). Applications of quantum statistics in psychological studies of decision processes. Foundations of Science, 1, 85–97.

    Article  Google Scholar 

  13. Aerts, D., & Czachor, M. (2004). Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A: Mathematical and Theoretical, 37, L123–L132.

    Article  Google Scholar 

  14. Aerts, D., & Durt, T. (1994). Quantum, classical and intermediate, an illustrative example. Foundations of Physics, 24, 1353–1369.

    Article  Google Scholar 

  15. Aerts, D., & Gabora, L. (2005a). A theory of concepts and their combinations I: the structure of the sets of contexts and properties. Kybernetes, 34, 167–191.

    Article  Google Scholar 

  16. Aerts, D., & Gabora, L. (2005b). A theory of concepts and their combinations II: a Hilbert space representation. Kybernetes, 34, 192–221.

    Article  Google Scholar 

  17. Aerts, D., & Sassoli de Bianchi, M. (2014). The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics, 351, 975–1025.

    Article  Google Scholar 

  18. Aerts, D., & Sassoli de Bianchi, M. (2016). The extended Bloch representation of quantum mechanics. Explaining superposition, interference and entanglement. Journal of Mathematical Physics, 57, 122110.

    Article  Google Scholar 

  19. Aerts, D., & Sassoli de Bianchi, M. (2017a). Quantum measurements as weighted symmetry breaking processes: the hidden measurement perspective. International Journal of Quantum Foundations, 3, 1–16.

    Google Scholar 

  20. Aerts, D., & Sassoli de Bianchi, M. (2017b). Beyond-quantum modeling of question order effects and response replicability in psychological measurements. Journal Mathematical Psychology, 79, 104–120.

    Article  Google Scholar 

  21. Aerts, D., & Sassoli de Bianchi, M. (2017c). Do spins have directions? Soft Computing, 21, 1483–1504.

    Article  Google Scholar 

  22. Aerts, D., & Sassoli de Bianchi, M. (2018a). The extended Bloch representation of quantum mechanics for infinite-dimensional entities. arXiv:1704.06249 [quant-ph].

  23. Aerts, D., & Sassoli de Bianchi, M. (2018b). Quantum perspectives on evolution. In S. Wuppuluri, & F.A. Doria (Eds.) , The map and the territory: exploring the foundations of science, thought and reality (pp. 571–595): Springer: The Frontiers collection.

  24. Aerts, D., & Sozzo, S. (2011). Quantum structure in cognition: why and how concepts are entangled? Quantum Interaction. Lecture Notes in Computer Science, 7052, 116–127.

    Article  Google Scholar 

  25. Aerts, D., & Sozzo, S. (2014). Quantum entanglement in concept combinations. International Journal of Theoretical Physics, 53, 3587–3603.

    Article  Google Scholar 

  26. Aerts, D., & Sozzo, S. (2015). What is quantum? Unifying its micro-physical and structural appearance. In H. Atmanspacher, et al. (Ed.) , Quantum interaction. QI 2014, Lecture notes in computer science (Vol. 8951 pp. 12–23). Cham: Springer.

  27. Aerts, D., Aerts, S., Coecke, B., D’Hooghe, B., Durt, T., Valckenborgh, F. (1997a). A model with varying fluctuations in the measurement context. In M. Ferrero, & A. van der Merwe (Eds.) , New developments on fundamental problems in quantum physics (pp. 7–9). Dordrecht: Springer Netherlands.

  28. Aerts, D., Coecke, B., Durt, T., Valckenborgh, F. (1997b). Quantum, classical and intermediate I: a model on the Poincaré sphere. Tatra Mountains Mathematical Publications, 10, 225.

    Google Scholar 

  29. Aerts, D., Broekaert, J., Smets, S. (1999a). A quantum structure description of the liar paradox. International Journal of Theoretical Physics, 38, 3231–3239.

    Article  Google Scholar 

  30. Aerts, D., Coecke, B., Smets, S. (1999b). On the origin of probabilities in quantum mechanics: creative and contextual aspects. In G. Cornelis, S. Smets, J.P. Van Bendegem (Eds.) , Metadebates on science (pp. 291–302). Dordrecht: Springer.

  31. Aerts, D., Sozzo, S., Veloz, T. (2015). Quantum structure of negation and conjunction in human thought. Frontiers in Psychology, 6, 1447.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aerts, D., Sassoli de Bianchi, M., Sozzo, S. (2016). On the foundations of the brussels operational-realistic approach to cognition. Frontiers of Physics, 4, 17. https://doi.org/10.3389/fphy.2016.00017.

    Article  Google Scholar 

  33. Aerts, D., Sassoli de Bianchi, M., Sozzo, S., Veloz, M. (2018a). On the conceptuality interpretation of quantum and relativity theories. Foundations of Science, https://doi.org/10.1007/s10699-018-9557-z.

  34. Aerts, D., Sassoli de Bianchi, M., Sozzo, S, Veloz, T. (2018). Quantum cognition goes beyond-quantum: modeling the collective participant in psychological measurements. arXiv:1802.10448 [q-bio.NC].

  35. Atmanspacher, H., Römer, H., Walach, H. (2002). Weak quantum theory: complementarity and entanglement in physics and beyond. Foundations of Physics, 32, 379–406.

    Article  Google Scholar 

  36. Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38, 447–452.

    Article  Google Scholar 

  37. Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Google Scholar 

  38. Birkhoff, G, & von Neumann, J. (1936). The logic of quantum mechanics. The Annals of Mathematics, 37, 823–843.

    Article  Google Scholar 

  39. Foulis, D. J., & Randall, C. H. (1978). Manuals, morphisms and quantum mechanics. In A.R. Marlow (Ed.) , Mathematical foundations of quantum theory (pp. 105–126). New York: Academic Press.

  40. Gabora, L., & Aerts, D. (2002). Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental & Theoretical Artificial Intelligence, 14, 327–358.

    Article  Google Scholar 

  41. Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics, 6, 885–893.

    Google Scholar 

  42. Gudder, S. P. (1970). On hidden-variable theories. Journal of Mathematical Physics, 11, 431–436.

    Article  Google Scholar 

  43. Haven, E., & Khrennikov, A.Y. (2013). Quantum social science. Cambridge: Cambridge University Press.

    Google Scholar 

  44. Jauch, J. M. (1968). Foundations of quantum mechanics. Reading: Addison-Wesley Publishing Company.

    Google Scholar 

  45. Jauch, J. M., & Piron, C. (1963). Can hidden variables be excluded in quantum mechanics? Helvetica Physica Acta, 36, 827–837.

    Google Scholar 

  46. Khrennikov, A. (1999). Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Foundations of Physics, 29, 1065–1098.

    Article  Google Scholar 

  47. Khrennikov, A. Y. (2010). Ubiquitous quantum structure. Berlin: Springer.

    Google Scholar 

  48. Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  49. Ludwig, G. (1983). Foundations of quantum mechanics I, texts & monographs in physics. New York: Springer.

    Google Scholar 

  50. Mackey, G. (1963). Mathematical foundations of quantum mechanics. W. A. Benjamin: Reading.

    Google Scholar 

  51. Piron, C. (1976). Foundations of quantum physics. W. A. Benjamin: Reading.

    Google Scholar 

  52. Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., Bonse, U. (1975). Verification of coherent spinor rotation of fermions. Physics Letters, 54A, 425–427.

    Article  Google Scholar 

  53. Sassoli de Bianchi, M. (2013a). The delta-quantum machine, the k-model, and the non-ordinary spatiality of quantum entities. Foundations of Science, 18, 11–41.

    Article  Google Scholar 

  54. Sassoli de Bianchi, M. (2013b). Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aerts’ machine-models. Central European Journal of Physics, 11, 147–161.

    Google Scholar 

  55. Sassoli de Bianchi, M. (2015). God may not play dice, but human observers surely do. Foundations of Science, 1, 77–105.

    Article  Google Scholar 

  56. Sassoli de Bianchi, M. (2017). Theoretical and conceptual analysis of the celebrated 4π-symmetry neutron interferometry experiments. Foundations of Science, 22, 627–653.

    Article  Google Scholar 

  57. Sassoli de Bianchi, M. (2018). On Aerts’ overlooked solution to the EPR paradox. arXiv:1805.02869 [quant-ph].

  58. Stapp, H. P. (2009). Mind, matter and quantum mechanics, QThe Frontiers Collection. Berlin: Springer.

    Google Scholar 

  59. Stapp, H. P. (2011). Mindful universe, the frontiers collection. Berlin: Springer.

    Google Scholar 

  60. Von Neumann, J. (1932). Grundlehren, Math. Wiss. XXXVIII.

  61. Wendt, A. (2015). Quantum mind and social science. Cambridge: Cambridge University Press.

    Google Scholar 

  62. Werner, S. A., Colella, R., Overhauser, A. W., Eagen, C. F. (1975). Observation of the phase shift of a neutron due to precession in a magnetic field. Review Letters, 35, 1053.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandro Sozzo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to a special issue of Activitas Nervosa Superior: Brain, Mind and Cognition, dedicated to Henry Stapp in honor of his 90th birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aerts, D., Sassoli de Bianchi, M., Sozzo, S. et al. From Quantum Axiomatics to Quantum Conceptuality. Act Nerv Super 61, 76–82 (2019). https://doi.org/10.1007/s41470-019-00030-7

Download citation

Keywords

  • Quantum theory
  • Conceptuality interpretation
  • Quantum cognition
  • Extended Bloch representation
  • Quantum structures
  • Quantum probabilities
  • Non-spatiality