Skip to main content
Log in

Sliding window persistence of quasiperiodic functions

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

A function is called quasiperiodic if its fundamental frequencies are linearly independent over the rationals. With appropriate parameters, the sliding window point clouds of such functions can be shown to be dense in tori with dimension equal to the number of independent frequencies. In this paper, we develop theoretical and computational techniques to study the persistent homology of such sets. Specifically, we provide parameter optimization schemes for sliding windows of quasiperiodic functions, and present theoretical lower bounds on their Rips persistent homology. The latter leverages a recent persistent Künneth formula. The theory is illustrated via computational examples and an application to dissonance detection in music audio samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Generously provided by Adam Huston.

References

  • Adamaszek, M., Adams, H.: The Vietoris-Rips complexes of a circle. Pac. J. Math. 290(1), 1–40 (2017)

    Article  MathSciNet  Google Scholar 

  • Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory, vol. 41. Springer, New York (2012)

    Google Scholar 

  • Aubel, C., Bölcskei, H.: Vandermonde matrices with nodes in the unit disk and the large sieve. Appl. Comput. Harmonic Anal. 47(1), 53–86 (2019)

    Article  MathSciNet  Google Scholar 

  • Bauer, U.: Ripser. https://github.com/Ripser/ripser (2016)

  • Belloy, M., Naeyaert, M., Keliris, G., Abbas, A., Keilholz, S., Van Der Linden, A., Verhoye, M.: Dynamic resting state fMRI in mice: detection of Quasi-Periodic Patterns. Proc. Int. Soc. Magn. Reson. Med. 0961 (2017)

  • Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol. 15. Springer, New York (2003)

    Google Scholar 

  • Broer, H.: KAM theory: the legacy of Kolmogorov’s 1954 paper. Bull. Am. Math. Soc. 41(4), 507–521 (2004)

    Article  Google Scholar 

  • Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata 173(1), 193–214 (2014)

    Article  MathSciNet  Google Scholar 

  • Chazal, F., Crawley-Boevey, W., de Silva, V.: The observable structure of persistence modules. Homol. Homotopy Appl. 18(2), 247–265 (2016)

    Article  MathSciNet  Google Scholar 

  • Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(05), 1550066 (2015)

    Article  MathSciNet  Google Scholar 

  • Das, S., Dock, C.B., Saiki, Y., Salgado-Flores, M., Sander, E., Wu, J., Yorke, J.A.: Measuring quasiperiodicity. Europhys. Lett. 114(4), 40005 (2016)

    Article  ADS  Google Scholar 

  • Emrani, S., Gentimis, T., Krim, H.: Persistent homology of delay embeddings and its application to wheeze detection. IEEE Signal Process. Lett. 21(4), 459–463 (2014)

    Article  ADS  Google Scholar 

  • Ferreira, P.J.S.G.: Super-resolution, the recovery of missing samples and Vandermonde matrices on the unit circle. In: Proceedings of the Workshop on Sampling Theory and Applications, Loen, Norway (1999)

  • Gakhar, H., Perea, J.A.: Künneth formulae in persistent homology. arXiv preprint arXiv:1910.05656 (2019)

  • Gakhar, H.: A topological study of toroidal dynamics. PhD Thesis. Michigan State University (2020)

  • Gómez, G., Mondelo, J.-M., Simó, C.: A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: numerical tests and examples. Discrete Contin. Dyn. Syst. B 14(1), 41 (2010)

    MathSciNet  Google Scholar 

  • Grafakos, L.: Classical Fourier Analysis, vol. 2. Springer, New York (2008)

    Book  Google Scholar 

  • Hollander, A., Van Paradijs, J.: Quasi-periodic oscillations in TT Arietis. Astron. Astrophys. 265, 77–81 (1992)

    ADS  Google Scholar 

  • Khasawneh, F.A., Munch, E., Perea, J.A.: Chatter classification in turning using machine learning and topological data analysis. IFAC-PapersOnLine 51(14), 195–200 (2018)

    Article  Google Scholar 

  • Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D Nonlinear Phenom. 67(1–3), 257–281 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Moitra, A.: Super-resolution, extremal functions and the condition number of Vandermonde matrices. In: Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, pp. 821–830 (2015)

  • Morozov, D.: Persistence algorithm takes cubic time in worst case. BioGeometry News, Dept. Comput. Sci., Duke Univ 2 (2005)

  • Perea, J.A.: Persistent homology of toroidal sliding window embeddings. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6435–6439. IEEE (2016)

  • Perea, J.A.: Topological time series analysis. Not. Am. Math. Soc. 66(5), 686 (2019)

    MathSciNet  Google Scholar 

  • Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2015)

    Article  MathSciNet  Google Scholar 

  • Perea, J.A., Deckard, A., Haase, S.B., Harer, J.: SW1PerS: sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinform. 16(1), 257 (2015)

    Article  Google Scholar 

  • Pollack, J.B., Toon, O.B.: Quasi-periodic climate changes on Mars: a review. Icarus 50(2–3), 259–287 (1982)

    Article  ADS  CAS  Google Scholar 

  • Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11(sept), 2487–2531 (2010)

    MathSciNet  Google Scholar 

  • Robins, V.: Towards computing homology from finite approximations. In: Topology Proceedings, vol. 24, pp. 503–532 (1999)

  • Samoilenko, A.M.: Elements of the Mathematical Theory of Multi-frequency Oscillations, vol. 71. Springer, Dordrecht (2012)

    Google Scholar 

  • Slater, N.B.: Gaps and steps for the sequence n \(\theta \) mod 1. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 63, pp. 1115–1123. Cambridge University Press (1967)

  • Sós, V.T.: On the distribution mod 1 of the sequence n\(\alpha \). Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1, 127–134 (1958)

    Google Scholar 

  • Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), vol. 32. Princeton University Press, Princeton (2016)

    Google Scholar 

  • Stewart, I., Tall, D.: Algebraic Number Theory and Fermat’s Last Theorem. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  • Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Warwick 1980, pp. 366–381. Springer, Germany (1981)

  • Tralie, C.J., Berger, M.: Topological Eulerian synthesis of slow motion periodic videos. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3573–3577. IEEE (2018)

  • Tralie, C.J., Perea, J.A.: (Quasi)-Periodicity quantification in video data, using topology. SIAM J. Imaging Sci. 11(2), 1049–1077 (2018)

    Article  MathSciNet  Google Scholar 

  • Tralie, C., Saul, N., Bar-On, R.: Ripser.py: a lean persistent homology library for python. J. Open Source Softw. 3(29), 925 (2018). https://doi.org/10.21105/joss.00925

    Article  ADS  Google Scholar 

  • Vela-Arevalo, L.V.: Time-frequency analysis based on wavelets for Hamiltonian systems. PhD Thesis. California Institute of Technology (2002)

  • Webber, C.L., Jr., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Article  PubMed  Google Scholar 

  • Weixing, D., Wei, H., Xiaodong, W., Yu, C.: Quasiperiodic transition to chaos in a plasma. Phys. Rev. Lett. 70(2), 170 (1993)

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wilden, I., Herzel, H., Peters, G., Tembrock, G.: Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9(3), 171–196 (1998)

    Article  Google Scholar 

  • Wojewoda, J., Kapitaniak, T., Barron, R., Brindley, J.: Complex behaviour of a quasiperiodically forced experimental system with dry friction. Chaos Solitons Fractals 3(1), 35–46 (1993)

    Article  ADS  Google Scholar 

  • Xu, B., Tralie, C.J., Antia, A., Lin, M., Perea, J.A.: Twisty Takens: a geometric characterization of good observations on dense trajectories. J. Appl. Comput. Topol. 3(4), 285–313 (2019)

    Article  MathSciNet  Google Scholar 

  • Zbilut, J.P., Thomasson, N., Webber, C.L.: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 24(1), 53–60 (2002)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation through grants DMS-1622301, CCF-2006661, and CAREER award DMS-1943758. The authors of this paper would like to thank Adam Huston for the audio recording of the brass horn. The first author would like to thank Rosemarie Bongers for discussions on some of the Harmonic Analysis aspects of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Gakhar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gakhar, H., Perea, J.A. Sliding window persistence of quasiperiodic functions. J Appl. and Comput. Topology 8, 55–92 (2024). https://doi.org/10.1007/s41468-023-00136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-023-00136-7

Keywords

Mathematics Subject Classification

Navigation