Abstract
A function is called quasiperiodic if its fundamental frequencies are linearly independent over the rationals. With appropriate parameters, the sliding window point clouds of such functions can be shown to be dense in tori with dimension equal to the number of independent frequencies. In this paper, we develop theoretical and computational techniques to study the persistent homology of such sets. Specifically, we provide parameter optimization schemes for sliding windows of quasiperiodic functions, and present theoretical lower bounds on their Rips persistent homology. The latter leverages a recent persistent Künneth formula. The theory is illustrated via computational examples and an application to dissonance detection in music audio samples.
Similar content being viewed by others
Notes
Generously provided by Adam Huston.
References
Adamaszek, M., Adams, H.: The Vietoris-Rips complexes of a circle. Pac. J. Math. 290(1), 1–40 (2017)
Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory, vol. 41. Springer, New York (2012)
Aubel, C., Bölcskei, H.: Vandermonde matrices with nodes in the unit disk and the large sieve. Appl. Comput. Harmonic Anal. 47(1), 53–86 (2019)
Bauer, U.: Ripser. https://github.com/Ripser/ripser (2016)
Belloy, M., Naeyaert, M., Keliris, G., Abbas, A., Keilholz, S., Van Der Linden, A., Verhoye, M.: Dynamic resting state fMRI in mice: detection of Quasi-Periodic Patterns. Proc. Int. Soc. Magn. Reson. Med. 0961 (2017)
Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol. 15. Springer, New York (2003)
Broer, H.: KAM theory: the legacy of Kolmogorov’s 1954 paper. Bull. Am. Math. Soc. 41(4), 507–521 (2004)
Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata 173(1), 193–214 (2014)
Chazal, F., Crawley-Boevey, W., de Silva, V.: The observable structure of persistence modules. Homol. Homotopy Appl. 18(2), 247–265 (2016)
Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(05), 1550066 (2015)
Das, S., Dock, C.B., Saiki, Y., Salgado-Flores, M., Sander, E., Wu, J., Yorke, J.A.: Measuring quasiperiodicity. Europhys. Lett. 114(4), 40005 (2016)
Emrani, S., Gentimis, T., Krim, H.: Persistent homology of delay embeddings and its application to wheeze detection. IEEE Signal Process. Lett. 21(4), 459–463 (2014)
Ferreira, P.J.S.G.: Super-resolution, the recovery of missing samples and Vandermonde matrices on the unit circle. In: Proceedings of the Workshop on Sampling Theory and Applications, Loen, Norway (1999)
Gakhar, H., Perea, J.A.: Künneth formulae in persistent homology. arXiv preprint arXiv:1910.05656 (2019)
Gakhar, H.: A topological study of toroidal dynamics. PhD Thesis. Michigan State University (2020)
Gómez, G., Mondelo, J.-M., Simó, C.: A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: numerical tests and examples. Discrete Contin. Dyn. Syst. B 14(1), 41 (2010)
Grafakos, L.: Classical Fourier Analysis, vol. 2. Springer, New York (2008)
Hollander, A., Van Paradijs, J.: Quasi-periodic oscillations in TT Arietis. Astron. Astrophys. 265, 77–81 (1992)
Khasawneh, F.A., Munch, E., Perea, J.A.: Chatter classification in turning using machine learning and topological data analysis. IFAC-PapersOnLine 51(14), 195–200 (2018)
Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D Nonlinear Phenom. 67(1–3), 257–281 (1993)
Moitra, A.: Super-resolution, extremal functions and the condition number of Vandermonde matrices. In: Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, pp. 821–830 (2015)
Morozov, D.: Persistence algorithm takes cubic time in worst case. BioGeometry News, Dept. Comput. Sci., Duke Univ 2 (2005)
Perea, J.A.: Persistent homology of toroidal sliding window embeddings. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6435–6439. IEEE (2016)
Perea, J.A.: Topological time series analysis. Not. Am. Math. Soc. 66(5), 686 (2019)
Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2015)
Perea, J.A., Deckard, A., Haase, S.B., Harer, J.: SW1PerS: sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinform. 16(1), 257 (2015)
Pollack, J.B., Toon, O.B.: Quasi-periodic climate changes on Mars: a review. Icarus 50(2–3), 259–287 (1982)
Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11(sept), 2487–2531 (2010)
Robins, V.: Towards computing homology from finite approximations. In: Topology Proceedings, vol. 24, pp. 503–532 (1999)
Samoilenko, A.M.: Elements of the Mathematical Theory of Multi-frequency Oscillations, vol. 71. Springer, Dordrecht (2012)
Slater, N.B.: Gaps and steps for the sequence n \(\theta \) mod 1. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 63, pp. 1115–1123. Cambridge University Press (1967)
Sós, V.T.: On the distribution mod 1 of the sequence n\(\alpha \). Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1, 127–134 (1958)
Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), vol. 32. Princeton University Press, Princeton (2016)
Stewart, I., Tall, D.: Algebraic Number Theory and Fermat’s Last Theorem. CRC Press, Boca Raton (2015)
Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Warwick 1980, pp. 366–381. Springer, Germany (1981)
Tralie, C.J., Berger, M.: Topological Eulerian synthesis of slow motion periodic videos. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3573–3577. IEEE (2018)
Tralie, C.J., Perea, J.A.: (Quasi)-Periodicity quantification in video data, using topology. SIAM J. Imaging Sci. 11(2), 1049–1077 (2018)
Tralie, C., Saul, N., Bar-On, R.: Ripser.py: a lean persistent homology library for python. J. Open Source Softw. 3(29), 925 (2018). https://doi.org/10.21105/joss.00925
Vela-Arevalo, L.V.: Time-frequency analysis based on wavelets for Hamiltonian systems. PhD Thesis. California Institute of Technology (2002)
Webber, C.L., Jr., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)
Weixing, D., Wei, H., Xiaodong, W., Yu, C.: Quasiperiodic transition to chaos in a plasma. Phys. Rev. Lett. 70(2), 170 (1993)
Wilden, I., Herzel, H., Peters, G., Tembrock, G.: Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9(3), 171–196 (1998)
Wojewoda, J., Kapitaniak, T., Barron, R., Brindley, J.: Complex behaviour of a quasiperiodically forced experimental system with dry friction. Chaos Solitons Fractals 3(1), 35–46 (1993)
Xu, B., Tralie, C.J., Antia, A., Lin, M., Perea, J.A.: Twisty Takens: a geometric characterization of good observations on dense trajectories. J. Appl. Comput. Topol. 3(4), 285–313 (2019)
Zbilut, J.P., Thomasson, N., Webber, C.L.: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 24(1), 53–60 (2002)
Acknowledgements
This work was partially supported by the National Science Foundation through grants DMS-1622301, CCF-2006661, and CAREER award DMS-1943758. The authors of this paper would like to thank Adam Huston for the audio recording of the brass horn. The first author would like to thank Rosemarie Bongers for discussions on some of the Harmonic Analysis aspects of this paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gakhar, H., Perea, J.A. Sliding window persistence of quasiperiodic functions. J Appl. and Comput. Topology 8, 55–92 (2024). https://doi.org/10.1007/s41468-023-00136-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41468-023-00136-7
Keywords
- Topological data analysis
- Persistent homology
- Dynamical systems
- Sliding window embeddings
- Quasiperiodicity
- Time series analysis