Abstract
When a category \({\mathscr {C}}\) satisfies certain conditions, we define the notion of rank invariant for arbitrary poset-indexed functors \(F:{\mathbf {P}}\rightarrow {\mathscr {C}}\) from a category theory perspective. This generalizes the standard notion of rank invariant as well as Patel’s recent extension. Specifically, the barcode of any interval decomposable persistence modules \(F:{\mathbf {P}}\rightarrow \mathbf {vec}\) of finite dimensional vector spaces can be extracted from the rank invariant by the principle of inclusion-exclusion. Generalizing this idea allows freedom of choosing the indexing poset \({\mathbf {P}}\) of \(F:{\mathbf {P}}\rightarrow {\mathscr {C}}\) in defining Patel’s generalized persistence diagram of F. Of particular importance is the fact that the generalized persistence diagram of F is defined regardless of whether F is interval decomposable or not. By specializing our idea to zigzag persistence modules, we also show that the zeroth level set barcode of a Reeb graph can be obtained in a purely set-theoretic setting without passing to the category of vector spaces. This leads to a promotion of Patel’s semicontinuity theorem about type \({\mathscr {A}}\) persistence diagram to Lipschitz continuity theorem for the category of sets.
This is a preview of subscription content, access via your institution.







Notes
A symmetric monoid is a set S equipped with a binary operation which is associative and symmetric. Also, S must contain an identity element.
Besides \(\mathbf {Set}\) and \(\mathbf {Vec}\), examples include the category of groups, the category of abelian groups, the category of topological spaces.
A subcategory \({\mathscr {C}}'\) of a category \({\mathscr {C}}\) is full if for all \(a,b\in \mathrm {ob}({\mathscr {C}}^{\prime })\), \(\hom _{{\mathscr {C}}'}(a,b)=\hom _{{\mathscr {C}}}(a,b)\).
Define the relation \(\sim \) on \({\mathscr {A}}({\mathscr {C}})\) as \([b]\sim [a]+[c]\) if there exists a short exact sequence \(0\rightarrow a\rightarrow b\rightarrow c\rightarrow 0\). Then, \({\mathscr {B}}(C)\) is defined as the quotient group \({\mathscr {A}}({\mathscr {C}})/\sim \). The category \(\mathbf {vec}\) is an instance of abelian categories, and it holds that \({\mathscr {A}}(\mathbf {vec})={\mathscr {B}}(\mathbf {vec})\) (Patel 2018, Example 6.2.1).
Given a diagram \(F:{\mathbf {Z}}\rightarrow \mathbf {vec}\), it holds that \(\mathrm {rank}\ \varphi _F(i',j')\le \mathrm {rank}\ \varphi _F(i,j)\) for \(i'\le i \le j \le j'\) in \({\mathbf {Z}}\).
More precisely, the codomain of \(\mu _{{\mathbf {Q}}}\) is the multiple of 1 in a specified base ring rather than \({\mathbf {Z}}\).
A constructible persistence module \(F:{\mathbf {R}}\rightarrow \mathbf {set}\) (Definition F.1 in Appendix) is often said to be a merge tree (Morozov et al. 2013). In order to compute the Patel’s persistence diagram of F, it suffices to consider a certain re-indexed diagram \(D(F):{\mathbf {Z}}\rightarrow \mathbf {set}\) of F. Such a re-indexing method is described in Appendix F (the paragraph Re-indexing a constructible persistence module by \({\mathbf {Z}}\)).
This theorem states that, when \({\mathscr {C}}\) is essentially small symmetric monoidal category with images, the persistence diagram of \(F:{\mathbf {R}}\rightarrow {\mathscr {C}}\) is stable to all sufficiently small perturbations of F.
Every \({\mathbf {Z}}\)-indexed \(\mathbf {set}\)-diagram F can be converted into a \(\mathbf {ZZ}\)-indexed diagram D(F) which contains the same combinatorial information as F (refer to the paragraph Re-indexing \({\mathbf {Z}}\)R-indexed diagram by \(\mathbf {ZZ}\) in Appendix F). In this respect, every merge tree can be viewed as a Reeb graph.
A category \({\mathscr {C}}\) is abelian if morphisms and objects in \({\mathscr {C}}\) can be “added” and kernels and cokernels exist in \({\mathscr {C}}\) with some desirable properties. See Mac Lane (2013, p.198) for the precise definition.
Given any \(M:\mathbf {ZZ}\rightarrow \mathbf {vec}\), l-type intervals in \(\mathrm {barc}^{\mathbf {ZZ}}(M)\) contribute to the dimension of the limit of M and that is the reason for the name ‘l’-type.
In De Silva et al. (2016), the authors use the term \({\mathbf {R}}\)-graph instead of Reeb graph.
References
Adams, H., Carlsson, G.: Evasion paths in mobile sensor networks. Int. J. Robot. Res. 34(1), 90–104 (2015)
Asashiba, H., Escolar, E.G., Nakashima, K., Yoshiwaki, M.: On approximation of \(2 \) d persistence modules by interval-decomposables (2019). arXiv preprint arXiv:1911.01637
Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)
Azumaya, G.: Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem. Nagoya Math. J. 1, 117–124 (1950)
Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: Proceedings of the thirtieth annual symposium on Computational geometry, p. 464. ACM (2014)
Bauer, U., Landi, C., Mémoli, F.: The Reeb graph edit distance is universal. Found. Comput. Math. (2020). https://doi.org/10.1007/s10208-020-09488-3
Bauer, U., Munch, E., Wang, Y.: Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs. In: Arge, L., Pach, J. (eds.) 31st International Symposium on Computational Geometry (SoCG 2015), vol. 34, pp. 461–475. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015). https://doi.org/10.4230/LIPIcs.SOCG.2015.461. Retrieved from http://drops.dagstuhl.de/opus/volltexte/2015/5146
Betthauser, L., Bubenik, P., Edwards, P.B.: Graded persistence diagrams and persistence landscapes. Discrete Comput. Geom. (2021). https://doi.org/10.1007/s00454-021-00316-1
Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theor. Comput. Sci. 392(1–3), 5–22 (2008)
Birkhoff, G.: Lattice theory, vol. 25. Am. Math. Soc. (1940)
Bjerkevik, H.B.: On the stability of interval decomposable persistence modules. Discrete Comput. Geom. 66(1), 92–121 (2021)
Botnan, M.B.: Interval decomposition of infinite zigzag persistence modules. Proc. Am. Math. Soc. 145(8), 3571–3577 (2017)
Botnan, M.B.: Multidimensional persistence, applied algebraic topology network (2017). https://www.youtube.com/watch?v=B3NPBSqH2lM&t=3257
Botnan, M.B., Lebovici, V., Oudot, S.: On Rectangle-Decomposable 2-Parameter Persistence Modules. In: 36th International Symposium on Computational Geometry (SoCG 2020), Leibniz International Proceedings in Informatics (LIPIcs), vol. 164, pp. 22:1–22:16 (2020). Retrieved from https://drops.dagstuhl.de/opus/volltexte/2020/12180. https://doi.org/10.4230/LIPIcs.SoCG.2020.22
Botnan, M.B., Lesnick, M.: Algebraic stability of zigzag persistence modules. Algebraic Geomet. Topol. 18(6), 3133–3204 (2018)
Bubenik, P., Scott, J.A.: Categorification of persistent homology. Dis. Comput. Geomet. 51(3), 600–627 (2014)
Buchin, K., Buchin, M., van Kreveld, M.J., Speckmann, B., Staals, F.: Trajectory grouping structure. JoCG 6(1), 75–98 (2015)
Carlsson, G., De Silva, V.: Zigzag persistence. Foundations Comput. Math. 10(4), 367–405 (2010)
Carlsson, G., De Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, pp. 247–256. ACM (2009)
Carlsson, G., de Silva, V., Kališnik, S., Morozov, D.: Parametrized homology via zigzag persistence. Algebraic Geomet. Topol. 19(2), 657–700 (2019)
Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Dis. Comput. Geomet. 42(1), 71–93 (2009)
Carrière, M., Oudot, S.: Local Equivalence and Intrinsic Metrics between Reeb Graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry (SoCG 2017), vol. 77, pp. 25:1-25:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.25. Retrieved from http://drops.dagstuhl.de/opus/volltexte/2017/7179
Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013)
Chambers, E.W., Letscher, D.: Persistent homology over directed acyclic graphs. In: Research in Computational Topology, pp. 11–32. Springer (2018)
Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.: Proximity of persistence modules and their diagrams. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 237–246 (2009)
Chazal, F., De Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. Springer, Berlin (2016)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Dis. Comput. Geomet. 37(1), 103–120 (2007)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Foundations Comput. Math. 9(1), 79–103 (2009)
Corcoran, P., Jones, C.B.: Spatio-temporal modeling of the topology of swarm behavior with persistence landscapes. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4 (2016)
Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(05), 1550066 (2015)
Curry, J.: Sheaves, cosheaves and applications (2013). arXiv preprint arXiv:1303.3255
Curry, J., Patel, A.: Classification of constructible cosheaves Theory Appl. Categories (2020)
De Silva, V., Munch, E., Patel, A.: Categorified Reeb graphs. Dis. Comput. Geomet. 55(4), 854–906 (2016)
Dey, T.K., Mémoli, F., Wang, Y.: Multiscale mapper: topological summarization via codomain covers. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 997–1013. SIAM (2016)
Dey, T.K., Wang, Y.: Reeb graphs: Approximation and persistence. Dis. Comput. Geomet. 49(1), 46–73 (2013)
Elchesen, A., Mémoli, F.: The reflection distance between zigzag persistence modules. J. Appl. Comput. Topol. 3(3), 185–219 (2019)
Ge, X., Safa, I.I., Belkin, M., Wang, Y.: Data skeletonization via reeb graphs. In: Advances in Neural Information Processing Systems, pp. 837–845 (2011)
Harvey, W., Wang, Y., Wenger, R.: A randomized o (m log m) time algorithm for computing reeb graphs of arbitrary simplicial complexes. In: Proceedings of the Twenty-Sixth Annual Symposium on Computational Geometry, pp. 267–276 (2010)
Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. J. Exp. Algorithmics 22, 1–20 (2017)
Kim, W., Mémoli, F.: Stable signatures for dynamic graphs and dynamic metric spaces via zigzag persistence (2017). arXiv preprint arXiv:1712.04064
Kim, W., Mémoli, F.: Formigrams: Clustering summaries of dynamic data. In: Proceedings of 30th Canadian Conference on Computational Geometry (CCCG 2018) (2018)
Kim, W., Mémoli, F.: Generalized persistence diagrams for persistence modules over posets (2018). arXiv preprint arXiv:1810.11517v4
Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Foundations Comput. Math. 15(3), 613–650 (2015). https://doi.org/10.1007/s10208-015-9255-y
Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Springer, Berlin (2013)
Mata, G., Morales, M., Romero, A., Rubio, J.: Zigzag persistent homology for processing neuronal images. Pattern Recognit. Lett. 62, 55–60 (2015)
McCleary, A., Patel, A.: Bottleneck stability for generalized persistence diagrams. Proc. Am. Math. Soc. 148(7), 3149–3161 (2020)
Miller, E.: Homological algebra of modules over posets (2020). arXiv preprint arXiv:2008.00063
Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 216–225. ACM (2011)
Mitchell, B.: Theory of Categories, vol. 17. Academic Press, Cambridge (1965)
Morozov, D., Beketayev, K., Weber, G.: Interleaving distance between merge trees. In: Proceedings of TopoInVis. (2013)
Oudot, S.Y., Sheehy, D.R.: Zigzag zoology: Rips zigzags for homology inference. Foundations Comput. Math. 15(5), 1151–1186 (2015)
Parsa, S.: A deterministic \(O(m \log m)\) time algorithm for the Reeb graph. In: ACM Sympos. Comput. Geom. (SoCG), pp. 269–276 (2012)
Patel, A.: Generalized persistence diagrams. J. Appl. Comput. Topol. 1, 1–23 (2018)
Puuska, V.: Erosion distance for generalized persistence modules. Homol. Homotopy Appl. 22(1), 233–254 (2020)
Reeb, G.: Sur les points singuliers d’une forme de pfaff completement integrable ou d’une fonction numerique [on the singular points of a completely integrable pfaff form or of a numerical function]. Comptes Rendus Acad. Sci. Paris 222, 847–849 (1946)
Rota, G.C.: On the foundations of combinatorial theory i theory of Möbius functions. Probab. Theory Related Fields. 2(4), 340–368 (1964)
Shinagawa, Y., Kunii, T., Kergosien, Y.L.: Surface coding based on morse theory. IEEE Comput. Graph. Appl. 11(5), 66–78 (1991). https://doi.org/10.1109/38.90568
Singh, G., Mémoli, F., Carlsson, G.: Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. In: Botsch, M., Pajarola, R. (eds) pp. 91–100. Eurographics Association, Prague, Czech Republic (2007). https://doi.org/10.2312/SPBG/SPBG07/091-100
Stefanou, A.: Tree decomposition of reeb graphs, parametrized complexity, and applications to phylogenetics. J. Appl. Comput. Topol. (2020). https://doi.org/10.1007/s41468-020-00051-1
Weibel, C.A.: The K-Book: An Introduction to Algebraic K-Theory, vol. 145. American Mathematical Society, Providence (2013)
Zomorodian, A., Carlsson, G.: Computing persistent homology. Dis. Comput. Geometry 33(2), 249–274 (2005)
Acknowledgements
The idea of studying the map from the limit to the colimit of a given diagram stems from work by Amit Patel and Robert MacPherson circa 2012. We are grateful to Amit Patel and Justin Curry for insightful comments. We thank Michael Lesnick, Magnus Bakke Botnan, and anonymous reviewers for suggesting alternative proofs of (variants of) Proposition 3.17. We also thank Amit Patel and Alex McCleary for suggesting Examples 3.20 and 3.21, respectively. Many thanks to Justin Curry and Benedikt Fluhr for finding an error in an earlier draft and for suggesting us to consider the Reeb graph in Fig. 6. Lastly, WK thanks Peter Bubenik, Nicolas Berkouk and Osman Okutan for beneficial discussions. This work was partially supported by NSF grants IIS-1422400, CCF-1526513, DMS-1723003, and CCF-1740761.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Limits and Colimits
We recall the notions of limit and colimit (Mac Lane 2013). Throughout this section I will stand for a small category.
Definition A.1
(Cone) Let \(F:I\rightarrow {\mathscr {C}}\) be a functor. A cone over F is a pair \(\left( L,(\pi _x)_{x\in \mathrm {ob}(I)}\right) \) consisting of an object L in \({\mathscr {C}}\) and a collection \((\pi _x)_{x\in \mathrm {ob}(I)}\) of morphisms \(\pi _x:L \rightarrow F(x)\) that commute with the arrows in the diagram of F, i.e. if \(g:x\rightarrow y\) is a morphism in I, then \(\pi _y= F(g)\circ \pi _x\) in \({\mathscr {C}}\), i.e. the diagram below commutes.

In Definition A.1, the cone \(\left( L,(\pi _x)_{x\in \mathrm {ob}(I)}\right) \) over F will sometimes be denoted simply by L, suppressing the collection \((\pi _x)_{x\in \mathrm {ob}(I)}\) of morphisms if no confusion can arise. A limit of a diagram \(F:I\rightarrow {\mathscr {C}}\) is a terminal object in the collection of all cones:
Definition A.2
(Limit) Let \(F:I\rightarrow {\mathscr {C}}\) be a functor. A limit of F is a cone over F, denoted by \(\left( \varprojlim F,\ (\pi _x)_{x\in \mathrm {ob}(I)} \right) \) or simply \(\varprojlim F\), with the following terminal property: If there is another cone \(\left( L',(\pi '_x)_{x\in \mathrm {ob}(I)} \right) \) of F, then there is a unique morphism \(u:L'\rightarrow \varprojlim F\) such that \(\pi _x'=\pi _x\circ u\) for all \(x\in \mathrm {ob}(I)\).
Remark A.3
It is possible that a diagram does not have a limit at all. However, if a diagram does have a limit then the terminal property of the limit guarantees its uniqueness up to isomorphism. For this reason, we will sometimes refer to a limit as the limit of a diagram.
Cocones and colimits are defined in a dual manner:
Definition A.4
(Cocone) Let \(F:I\rightarrow {\mathscr {C}}\) be a functor. A cocone over F is a pair \(\left( C,(i_x)_{x\in \mathrm {ob}(I)}\right) \) consisting of an object C in \({\mathscr {C}}\) and a collection \((i_x)_{x\in \mathrm {ob}(I)}\) of morphisms \(i_x:F(x)\rightarrow C\) that commute with the arrows in the diagram of F, i.e. if \(g:x\rightarrow y\) is a morphism in I, then \(i_x= i_y\circ F(g)\) in \({\mathscr {C}}\), i.e. the diagram below commutes.

In Definition A.4, a cocone \(\left( C,(i_x)_{x\in \mathrm {ob}(I)}\right) \) over F will sometimes be denoted simply by C, suppressing the collection \((i_x)_{x\in \mathrm {ob}(I)}\) of morphisms. A colimit of a diagram \(F:I\rightarrow {\mathscr {C}}\) is an initial object in the collection of cocones over F:
Definition A.5
(Colimit) Let \(F:I\rightarrow {\mathscr {C}}\) be a functor. A colimit of F is a cocone, denoted by \(\left( \varinjlim F,\ (i_x)_{x\in \mathrm {ob}(I)}\right) \) or simply \(\varinjlim F\), with the following initial property: If there is another cocone \(\left( C', (i'_x)_{x\in \mathrm {ob}(I)}\right) \) of F, then there is a unique morphism \(u:\varinjlim F\rightarrow C'\) such that \(i'_x=u\circ i_x\) for all \(x\in \mathrm {ob}(I)\).
Remark A.6
It is possible that a diagram does not have a colimit at all. However, if a diagram does have a colimit then the initial property of the colimit guarantees its uniqueness up to isomorphism. For this reason, we will sometimes refer to a colimit as the colimit of a diagram.
Remark A.7
(Restriction of an indexing poset) Let \({\mathbf {P}}\) be any poset and let \({\mathbf {Q}}\) be a subposet of \({\mathbf {P}}\). In categorical language, \({\mathbf {Q}}\) is a full subcategory of \({\mathbf {P}}\). Let \(F:{\mathbf {P}}\rightarrow {\mathscr {C}}\) be a functor.
-
(i)
Assume that the limit of the restriction \(F|_{{\mathbf {Q}}}\) exists. For any cone \(\left( L', (\pi _p')_{p\in {\mathbf {P}}}\right) \) over F, its restriction \(\left( L', (\pi _p')_{p\in {\mathbf {Q}}}\right) \) is a cone over the restriction \(F|_{\mathbf {Q}}:{\mathbf {Q}}\rightarrow {\mathscr {C}}\). Therefore, by the terminal property of the limit \(\left( \varprojlim F|_{{\mathbf {Q}}}, (\pi _q)_{q\in {\mathbf {Q}}}\right) \), there exists the unique morphism \(u:L' \rightarrow \varprojlim F|_{{\mathbf {Q}}}\) such that \(\pi _q'=\pi _q\circ u\) for all \(q\in {\mathbf {Q}}\).
-
(ii)
Assume that the colimit of the restriction \(F|_{{\mathbf {Q}}}\) exists. For any cocone \(\left( C', (i_p')_{p\in {\mathbf {P}}}\right) \) over F, its restriction \(\left( C', (i_p')_{p\in {\mathbf {Q}}}\right) \) is a cocone over the restriction \(F|_{\mathbf {Q}}:{\mathbf {Q}}\rightarrow {\mathscr {C}}'\). Therefore, by the initial property of \(\varinjlim F|_{{\mathbf {Q}}}\), there exists the unique morphism \(u:\varinjlim F|_{{\mathbf {Q}}} \rightarrow C'\) such that such that \(i'_q=u\circ i_q\) for all \(q\in {\mathbf {Q}}\).
The rank invariant of a standard persistence module
In this section we review some important (standard) results about the rank invariant of one-dimensional or multidimensional persistence modules. Recall the poset \({\mathbf {U}}\) from Definition 2.10.
Definition B.1
(Rank invariant of a persistence module) Let \(F:{\mathbf {R}}\rightarrow \mathbf {vec}\) be any persistence module. The rank invariant of F is defined as the map \(\mathrm {rk}(F):{\mathbf {U}}\rightarrow {\mathbf {Z}}_+\) which sends each \({\mathbf {u}}=(u_1,u_2)\in {\mathbf {U}}\) to \(\mathrm {rank}\left( F(u_1\le u_2)\right) \).
Remark B.2
(Category theoretical interpretation of the rank invariant) Let \(F:{\mathbf {R}}\rightarrow \mathbf {vec}\) be a persistence module. For any \({\mathbf {u}}=(u_1,u_2)\in {\mathbf {U}}\), it is not difficult to check that
are a limit and a colimit of \(F|_{[u_1,u_2]}\), respectively. The canonical LC map from \(F_{u_1}\) to \(F_{u_2}\) is definitely \(\varphi _F(u_1,u_2)\), which is identical to \(\varphi _F(t,u_2)\circ \varphi _F(u_1,t)\), for any \(t\in [u_1,u_2]\). Therefore, \(\mathrm {rk}(F)({\mathbf {u}})\) can be regarded as the rank of the canonical LC map of \(F|_{[u_1,u_2]}\).
Remark B.3
In Definition B.1, \(\mathrm {rk}(F)({\mathbf {u}})\) for \({\mathbf {u}}=(u_1,u_2)\) counts all the persistence features of the persistence module F which are born before or at \(u_1\) and die after \(u_2\). Also, when \(u_1=u_2\), \(\mathrm {rk}(M)({\mathbf {u}})\) is the dimension of \(F_{u_1}\).
Remark B.4
(Rank invariant is order-reversing) In Definition B.1, for any pair \({\mathbf {u}}=(u_1,u_2)\le {\mathbf {u}}'=\left( u_1',u_2'\right) \) in \({\mathbf {U}}\), since
it holds that \(\mathrm {rk}(F)\left( {\mathbf {u}}'\right) \le \mathrm {rk}(F)({\mathbf {u}}).\) Therefore, the map \(\mathrm {rk}(F):{\mathbf {U}}\rightarrow {\mathbf {Z}}_+\) is an order-reversing map. This result generalizes to McCleary and Patel (2020, Proposition 4.4). Also, see Puuska (2020, Proposition 3.7).
Theorem B.5
(Completeness of the rank invariant for one-dimensional modules Carlsson and Zomorodian 2009) The rank invariant defined in Definition B.1 is a complete invariant for one-dimensional persistence modules, i.e. if there are two constructible persistence modules \(F,G:{\mathbf {R}}\rightarrow \mathbf {vec}\) such that \(\mathrm {rk}(F)=\mathrm {rk}(G)\), then F and G are isomorphic (see Definition F.1 for the meaning of constructible).
The rank invariant can also be defined for multidimensional modules \(F:{\mathbf {R}}^n \rightarrow \mathbf {vec}\), \(n>1\) : For any pair \({\mathbf {a}}\le {\mathbf {b}}\) in \({\mathbf {R}}^n\), let \(\mathrm {rk}(F)({\mathbf {a}},{\mathbf {b}}):=\mathrm {rank}\left( \varphi _F({\mathbf {a}}, {\mathbf {b}})\right) \). This defines a function from the set \(\{({\mathbf {a}},{\mathbf {b}})\in {\mathbf {R}}^n\times {\mathbf {R}}^n: {\mathbf {a}}\le {\mathbf {b}}\}\) to \({\mathbf {Z}}_+\). However, the map \(\mathrm {rk}(F)\) is not a complete invariant for multidimensional modules, i.e. for any \(n>1\), there exists a pair of persistence modules \(F,G:{\mathbf {R}}^n\rightarrow \mathbf {vec}\) that are not isomorphic but \(\mathrm {rk}(M)=\mathrm {rk}(N)\) (Carlsson and Zomorodian 2009).
Comparison with Ville Puuska’s rank invariant
In (Puuska 2020), Ville Puuska considers the set
and defines the rank invariant of a functor \(F:{\mathbf {P}}\rightarrow {\mathscr {C}}\) as the map \(dF:\mathrm {Dgm}_{{\mathbf {P}}}\rightarrow {\mathscr {C}}\) sending (a, b) to \(\mathrm {im}\left( \varphi _F(a,b)\right) \in \mathrm {ob}({\mathscr {C}})\). Even though this definition is a straightforward generalization of the rank invariant of Carlsson and Zomorodian (2009), when \({\mathbf {P}}=\mathbf {ZZ}\) and \({\mathscr {C}}=\mathbf {vec}\), this definition is not anywhere near a complete invariant of \(F:{\mathbf {P}}\rightarrow {\mathscr {C}}\). Namely, there exists a pair of zigzag modules M, N such that \(d_{\mathrm {I}}(M,N)=+\infty \) (Definition D.4) whereas \(dM\cong dN\):
Example C.1
Consider the two zigzag modules \(M,N:\mathbf {ZZ}\rightarrow \mathbf {vec}\) defined as follows: \(M:=I^{(-\infty ,\infty )_\mathbf {ZZ}}\) and N is defined as
where \(\pi _1,\pi _2:{\mathbb {F}}^2\rightarrow {\mathbb {F}}\) are the canonical projections to the first and the second coordinate, respectively. Note that \(dM(a,b)\cong dN(a,b)\cong {\mathbb {F}}\) for all \((a,b)\in \mathrm {Dgm}_{\mathbf {P}}\). However, it is not difficult to check that \(\mathrm {barc}^{\mathbf {ZZ}}(M)=\left\{ \!\!\left\{ (-\infty ,\infty )_{\mathbf {ZZ}}\right\} \!\!\right\} \) and \(\mathrm {barc}^{\mathbf {ZZ}}(N)=\left\{ \!\!\left\{ (i,i+2)_{\mathbf {ZZ}}:i\in {\mathbf {Z}}\right\} \!\!\right\} \). This implies that \(d_\mathrm {B}\left( \mathrm {barc}^{\mathbf {ZZ}}(M),\mathrm {barc}^{\mathbf {ZZ}}(N)\right) =+\infty \), and in turn \(d_{\mathrm {I}}(M,N)=+\infty \) by Theorem D.8.
Interleaving distance and existing stability theorems
1.1 Interleaving distance
We review the interleaving distance between \({\mathbf {R}}^d\) (or \({\mathbf {Z}}^d\))-indexed functors and between \(\mathbf {ZZ}\)-indexed functors (Botnan and Lesnick 2018; Chazal et al. 2009; Lesnick 2015).
1.1.1 Natural transformations
We recall the notion of natural transformations from category theory (Mac Lane 2013): Let \({\mathscr {C}}\) and \({\mathscr {D}}\) be any categories and let \(F,G:{\mathscr {C}}\rightarrow {\mathscr {D}}\) be any two functors. A natural transformation \(\psi :F\Rightarrow G\) is a collection of morphisms \(\psi _c: F_c\rightarrow G_c\) in \({\mathscr {D}}\) for all objects \(c\in {\mathscr {C}}\) such that for any morphism \(f:c\rightarrow c'\) in \({\mathscr {C}}\), the following diagram commutes:

Natural transformations \(\psi :F\rightarrow G\) are considered as morphisms in the category \({\mathscr {D}}^{\mathscr {C}}\) of all functors from \({\mathscr {C}}\) to \({\mathscr {D}}.\)
1.1.2 The interleaving distance between \({\mathbf {R}}^d\) (or \({\mathbf {Z}}^d\))-indexed functors
In what follows, for any \(\varepsilon \in [0,\infty )\), we will denote the vector \(\varepsilon (1,\ldots ,1)\in {\mathbf {R}}^d\) by \(\varvec{\varepsilon }\). The dimension d will be clearly specified in context.
Definition D.1
(\({\mathbf {v}}\)-shift functor) Let \({\mathscr {C}}\) be any category. For each \({\mathbf {v}}\in [0,\infty )^n\), the \({\mathbf {v}}\)-shift functor \((-)({\mathbf {v}}):{\mathscr {C}}^{{\mathbf {R}}^d}\rightarrow {\mathscr {C}}^{{\mathbf {R}}^d}\) is defined as follows:
-
(i)
(On objects) Let \(F:{\mathbf {R}}^d\rightarrow {\mathscr {C}}\) be any functor. Then the functor \(F({\mathbf {v}}):{\mathbf {R}}^d\rightarrow {\mathscr {C}}\) is defined as follows: For any \({\mathbf {a}}\in {\mathbf {R}}^d\),
$$\begin{aligned} F({\mathbf {v}})_{\mathbf {a}}:=F_{{\mathbf {a}}+{\mathbf {v}}}. \end{aligned}$$Also, for another \({\mathbf {a}}'\in {\mathbf {R}}^d\) such that \({\mathbf {a}}\le {\mathbf {a}}'\) we define
$$\begin{aligned} \varphi _{F({\mathbf {v}})}({\mathbf {a}},{\mathbf {a}}'):= \varphi _{F}\left( {\mathbf {a}}+{\mathbf {v}}, {\mathbf {a}}'+{\mathbf {v}}\right) . \end{aligned}$$In particular, if \({\mathbf {v}}=\varvec{\varepsilon }\in [0,\infty )^d\), then we simply write \(F(\varepsilon )\) in lieu of \(F(\varvec{\varepsilon })\).
-
(ii)
(On morphisms) Given any natural transformation \(\psi :F\Rightarrow G\), the natural transformation \(\psi ({\mathbf {v}}):F({\mathbf {v}})\Rightarrow G({\mathbf {v}})\) is defined as \(\psi ({\mathbf {v}})_{\mathbf {a}}=\psi _{{\mathbf {a}}+{\mathbf {v}}}:F({\mathbf {v}})_{\mathbf {a}}\rightarrow G({\mathbf {v}})_{\mathbf {a}}\) for each \({\mathbf {a}}\in {\mathbf {R}}^d\).
For any \({\mathbf {v}}\in [0,\infty )^d\), let \(\psi _F^{\mathbf {v}}: F \Rightarrow F({\mathbf {v}})\) be the natural transformation whose restriction to each \(F_{\mathbf {a}}\) is the morphism \(\varphi _F({\mathbf {a}}, {\mathbf {a}}+{\mathbf {v}})\) in \({\mathscr {C}}\). When \({\mathbf {v}}=\varvec{\varepsilon }\), we denote \(\psi _F^{\mathbf {v}}\) simply by \(\psi _F^\varepsilon \).
Definition D.2
(\({\mathbf {v}}\)-interleaving between \({\mathbf {R}}^d\)-indexed functors) Let \({\mathscr {C}}\) be any category. Given any two functors \(F,G:{\mathbf {R}}^d\rightarrow {\mathscr {C}},\) we say that they are \({\mathbf {v}}\)-interleaved if there are natural transformations \(f:F\Rightarrow G({\mathbf {v}})\) and \(g:G\Rightarrow F({\mathbf {v}})\) such that
-
(i)
\(g({\mathbf {v}})\circ f = \psi _F^{2{\mathbf {v}}}\),
-
(ii)
\(f({\mathbf {v}})\circ g = \psi _G^{2{\mathbf {v}}}\).
In this case, we call (f, g) a \({\mathbf {v}}\)-interleaving pair. When \({\mathbf {v}}=\varepsilon (1,\ldots ,1)\), we simply call (f, g) \(\varepsilon \)-interleaving pair. The interleaving distance between \(d_{\mathrm {I}}^{\mathscr {C}}\) is defined as
where we set \(d_{\mathrm {I}}^{\mathscr {C}}(F,G)=\infty \) if there is no \(\varepsilon \)-interleaving pair between F and G for any \(\varepsilon \in [0,\infty )\). Then \(d_{\mathrm {I}}^{\mathscr {C}}\) is an extended pseudo-metric for \({\mathscr {C}}\)-valued \({\mathbf {R}}^d\)-indexed functors. By replacing \({\mathbf {R}}^d\) by \({\mathbf {Z}}^d\) in Definitions D.1and D.2, we similarly obtain the interleaving distance between \({\mathbf {Z}}^d\)-indexed functors.
Definition D.3
(Poset \({\mathbf {U}}\)) The poset \({\mathbf {U}}:=\left\{ (u_1,u_2)\in {\mathbf {R}}^2: u_1\le u_2\right\} \) is equipped with the partial order inherited from \({\mathbf {R}}^{\mathrm {op}}\times {\mathbf {R}}\) (see Fig. 8 (A)) , i.e. \((u_1,u_2)\le (u_1',u_2')\) in \({\mathbf {U}}\) if and only if the interval \((u_1,u_2)\subset {\mathbf {R}}\) is contained in \((u_1',u_2')\subset {\mathbf {R}}\).
The reflection map \({\mathbf {r}}:{\mathbf {R}}^{\mathrm {op}}\rightarrow {\mathbf {R}}\) defined by \(t\mapsto -t\) induces a poset isomorphism \({\mathbf {R}}^\mathrm {op}\times {\mathbf {R}}\rightarrow {\mathbf {R}}^2\) and this in turn induces an isomorphism \({\mathscr {C}}^{{\mathbf {R}}^2}\rightarrow {\mathscr {C}}^{{\mathbf {R}}^{\mathrm {op}}\times {\mathbf {R}}}.\) Therefore, the notions of \(\varepsilon \)-interleaving pair and the interleaving distance \(d_{\mathrm {I}}^{\mathscr {C}}\) on \(\mathrm {ob}({\mathscr {C}}^{{\mathbf {R}}^2})\) carry over to \({\mathbf {R}}^\mathrm {op}\times {\mathbf {R}}\)-indexed or \({\mathbf {U}}\)-indexed functors.
1.1.3 Extension functor and the interleaving for \(\mathbf {ZZ}\)-indexed functors
From Definition 2.10, recall the poset \(\mathbf {ZZ}=\{(i,j)\in {\mathbf {Z}}^2: j=i\ \text{ or }\ j=i-1\}\subset {\mathbf {R}}^{\mathrm {op}}\times {\mathbf {R}}\). Let \(\iota :\mathbf {ZZ}\hookrightarrow {\mathbf {R}}^\mathrm {op}\times {\mathbf {R}}\) be the canonical inclusion map. For any \({\mathbf {u}}=(u_1,u_2)\in {\mathbf {U}}\), let
which is a subposet of \(\mathbf {ZZ}\). Observe that \(\mathbf {ZZ}[\iota \le {\mathbf {u}}]\) cannot be empty for any choice of \({\mathbf {u}}\in {\mathbf {U}}\). See Fig. 8b.
a The shaded region stands for the poset \({\mathbf {U}}\). For \({\mathbf {u}},{\mathbf {u}}'\in {\mathbf {U}}\) as marked in the figure, we have \({\mathbf {u}}\le {\mathbf {u}}'\). b Fixing \({\mathbf {u}}\in {\mathbf {U}}\) as shown, the subposet \(\mathbf {ZZ}[\iota \le {\mathbf {u}}]\) is indicated by the red points and the red arrows
We review the definition of extension functor \(E:{\mathscr {C}}^{\mathbf {ZZ}}\rightarrow {\mathscr {C}}^{{\mathbf {U}}}\) of Botnan and Lesnick (2018) for a cocomplete category \({\mathscr {C}}\). For any \(M: \mathbf {ZZ}\rightarrow {\mathscr {C}}\), define the functor \({\tilde{E}}(M):{\mathbf {R}}^\mathrm {op}\times {\mathbf {R}}\rightarrow {\mathscr {C}}\) as follows: For \({\mathbf {a}}\in {\mathbf {R}}^\mathrm {op}\times {\mathbf {R}}\),
Also, for any pair \({\mathbf {a}}\le {\mathbf {b}}\) in \({\mathbf {R}}^{\mathrm {op}}\times {\mathbf {R}}\), since \(\mathbf {ZZ}[\iota \le {\mathbf {a}}]\) is a subposet of \(\mathbf {ZZ}[\iota \le {\mathbf {b}}]\), the linear map \(\varinjlim M|_{\mathbf {ZZ}[(\iota \le {\mathbf {a}})]}\rightarrow \varinjlim M|_{\mathbf {ZZ}[(\iota \le {\mathbf {b}})]}\), is uniquely specified by the initial property of the colimit \(\varinjlim M|_{\mathbf {ZZ}[(\iota \le {\mathbf {a}})]}\) (Definition A.5 and Remark A.7). This \({\tilde{E}}(M)\) is called the left Kan extension of M along \(\iota :\mathbf {ZZ}\hookrightarrow {\mathbf {R}}^{\mathrm {op}}\times {\mathbf {R}}\). Given \(M,N:\mathbf {ZZ}\rightarrow {\mathscr {C}}\) and a natural transformation \(\Gamma :M\rightarrow N\), universality of colimits also yields an induced morphism \({\tilde{\Gamma }}:{\tilde{E}}(M)\rightarrow {\tilde{E}}(N)\). Given any \(M:\mathbf {ZZ}\rightarrow {\mathscr {C}}\), the functor \(E(M):{\mathbf {U}}\rightarrow {\mathscr {C}}\) is defined as the restriction \({\tilde{E}}(M)|_{\mathbf {U}}: {\mathbf {U}}\rightarrow {\mathscr {C}}\).
Definition D.4
(Interleaving distance between zigzag modulesBotnan and Lesnick 2018) Let \({\mathscr {C}}\) be a cocomplete category. For any \(M,N:\mathbf {ZZ}\rightarrow {\mathscr {C}}\),
1.2 Existing stability theorems
In this section we review the existing stability results from Botnan and Lesnick (2018), McCleary and Patel (2020).
1.2.1 Stability theorem of Patel
We recall McCleary and Patel (2020, Theorem 5.6):
Theorem D.5
(Stability for constructible persistence modules) Let \({\mathscr {C}}\) be an essentially small, abelianFootnote 12 category. Let \(F,G:{\mathbf {R}}\rightarrow {\mathscr {C}}\) be constructible (Definition F.1). Then,
We remark that the persistence diagram \(\mathrm {dgm}_{{\mathscr {C}}}(F)\) can be computed via the following process: (1) Re-indexing of \(F:{\mathbf {R}}\rightarrow {\mathscr {C}}\) to obtain \(D(F):{\mathbf {Z}}\rightarrow {\mathscr {C}}\) (Sect. F), (2) computing the persistence diagram of D(F) by Definition 3.13, and (3) the rescaling of the persistence diagram (Sect. F).
1.2.2 Bottleneck distance
We regard the extended real line \(\overline{{\mathbf {R}}}:={\mathbf {R}}\cup \{-\infty ,\infty \}\) as a poset with the canonical order \(\le \). Let \(\overline{{\mathbf {U}}}:=\left\{ (u_1,u_2)\in \overline{{\mathbf {R}}}^2: u_1\le u_2\right\} \) be equipped with the partial order inherited from \(\overline{{\mathbf {R}}}^{\mathrm {op}}\times \overline{{\mathbf {R}}}\). For \({\mathbf {u}}=(u_1,u_2),\ {\mathbf {v}}=(v_1,v_2)\in \overline{{\mathbf {U}}}\), let
We can quantify the difference between two persistence diagrams or two barcodes of real intervals, using the bottleneck distance (Cohen-Steiner et al. 2007):
Definition D.6
(The bottleneck distance) Let \(X_1,X_2\) be multisets of points in \(\overline{{\mathbf {U}}}\). Let \(\alpha :X_1\nrightarrow X_2\) be a matching, i.e. a partial injection. We call \(\alpha \) an \(\varepsilon \)-matching if
-
(i)
for all \({\mathbf {u}}\in \mathrm {dom}(\alpha )\), \(\left\Vert {\mathbf {u}}-\alpha ({\mathbf {u}})\right\Vert _\infty \le \varepsilon \),
-
(ii)
for all \({\mathbf {u}}=(u_1,u_2)\in X_1\setminus \mathrm {dom}(\alpha )\), \(u_2-u_1 \le 2\varepsilon \),
-
(iii)
for all \({\mathbf {v}}=(v_1,v_2)\in X_2 \setminus \mathrm {im}(\alpha )\), \(v_2-v_1 \le 2\varepsilon \).
Their bottleneck distance \(d_\mathrm {B}(X_1,X_2)\) is defined as the infimum of \(\varepsilon \in [0,\infty )\) for which there exists an \(\varepsilon \)-matching \(\alpha :X_1\nrightarrow X_2\).
Recall that \(\langle b,d \rangle _{\mathbf {ZZ}}\) for \(b,d\in {\mathbf {Z}}\) denotes intervals of \(\mathbf {ZZ}\) and that \(\langle b,d \rangle \) for \(b,d\in {\mathbf {R}}\) denotes intervals of \({\mathbf {R}}\).
Remark D.7
(1) Given a pair of multisets of intervals \(\langle b,d \rangle _{\mathbf {ZZ}}\) of \(\mathbf {ZZ}\), their bottleneck distance is defined by converting those multisets into the multisets of \(\overline{{\mathbf {U}}}\) via the identification \(\langle b,d \rangle _{\mathbf {ZZ}}\leftrightarrow (b,d)\in \overline{{\mathbf {U}}}\). (2) A map \(\mathbf {Int}(\mathbf {ZZ})\rightarrow {\mathbf {Z}}_+\) can be considered as a multiset of \(\mathbf {Int}(\mathbf {ZZ})\) in an obvious way, and thus such maps can also be compared in \(d_\mathrm {B}\). (3) The bottleneck distance between multisets of real intervals \(\langle b,d \rangle \) is also defined via the identification \(\langle b,d \rangle \leftrightarrow (b,d)\in \overline{{\mathbf {U}}}\).
1.2.3 Algebraic stability for zigzag modules
Theorem D.8
(Bottleneck stability for zigzag modules Bjerkevik 2021; Botnan and Lesnick 2018) For any \(M,N:\mathbf {ZZ}\rightarrow \mathbf {vec}\),
Let M be any zigzag module. By \(\mathrm {barc}^{\mathbf {ZZ}}_{{\mathbf {o}}}(M),\mathrm {barc}^{\mathbf {ZZ}}_{\mathbf {co}}(M),\mathrm {barc}^{\mathbf {ZZ}}_{\mathbf {oc}}(M)\) and \(\mathrm {barc}^{\mathbf {ZZ}}_{{\mathbf {c}}}(M)\), we mean the subcollection of \(\mathrm {barc}^{\mathbf {ZZ}}(M)\), consisting solely of the points of the form \((b,d)_{\mathbf {ZZ}}, [b,d)_{\mathbf {ZZ}}, (b,d]_{\mathbf {ZZ}},\) and \([b,d]_{\mathbf {ZZ}}\), respectively.
Remark D.9
Suppose that the two zigzag modules M, N in Theorem D.8 are the levelset zigzag persistent homology of any two Morse type functions \(f,g:X\rightarrow {\mathbf {R}}\) (Definition G.1). Then, the inequality in Theorem D.8 can be extended and strengthened as follows (Botnan and Lesnick 2018; Carlsson et al. 2019, Theorem 4.11): For each \(\star \in \{{\mathbf {o}},\mathbf {co},\mathbf {oc},{\mathbf {c}}\}\),
Therefore, we also have
where the maximum is taken over all \(\star \in \{{\mathbf {o}},\mathbf {co},\mathbf {oc},{\mathbf {c}}\}\).
Proof of Proposition 3.17
In this section we prove Proposition 3.17. For notational simplicity, we set \({\mathbf {P}}=\mathbf {ZZ}\). We remark that the proof extends to arbitrary connected locally finite posets.
1.1 Canonical bases and l-type intervals
Suppose that \(M:\mathbf {ZZ}\rightarrow \mathbf {vec}\) is given as \(M=\bigoplus _{c\in C} I^{J_c}\) for an index set C. Then for each \((i,j)\in \mathbf {ZZ}\), the dimension of \(M_{(i,j)}\) is the total multiplicity of intervals containing (i, j) in \(\mathrm {barc}^{\mathbf {ZZ}}(M)=\left\{ \!\!\left\{ J_c: c\in C\right\} \!\!\right\} \). Given any \(c\in C\), and \((i,j)\in J_c\), let \(e^{(i,j)}_c\) denote the 1 in the field \({\mathbb {F}}\) which corresponds to the (i, j)-component of \(I^{J_c}\). Then for each \((i,j)\in \mathbf {ZZ}\), the vector space \(M_{(i,j)}\) admits the canonical basis \(B_{(i,j)}=\left\{ e^{(i,j)}_c: J_c \ \text{ contains } (i,j) \right\} \) and hence every \(v\in M_{(i,j)}\) can be uniquely expressed as a linear combination of the elements in \(B_{(i,j)}\), i.e.
This expression is called the canonical expression of v. The collection \({\mathscr {B}}=(B_{(i,j)})_{(i,j)\in \mathbf {ZZ}}\) is called the canonical basis of \(M=\bigoplus _{c\in C} I^{J_c}\).
In order to prove Proposition 3.17, we identify a certain type of intervals of the poset \(\mathbf {ZZ}\):
Definition E.1
(l-type intervals) Any interval I of \(\mathbf {ZZ}\) is called l-typeFootnote 13 if I is of the form \((b,d)_\mathbf {ZZ}\) for some \(b\in {\mathbf {Z}}\cup \{-\infty \}\) and \(d\in {\mathbf {Z}}\cup \{\infty \}\) (see Fig. 2).
Notation E.2
Let \(M:\mathbf {ZZ}\rightarrow \mathbf {vec}\) be any zigzag module and let \((i,j),(i',j')\in \mathbf {ZZ}\). For \(v_{(i,j)}\in M_{(i,j)}\) and \(v_{(i',j')}\in M_{(i',j')}\), we write \(v_{(i,j)}\sim v_{(i',j')}\) if \((i,j),(i',j')\) are comparable and either
Proof of Proposition 3.17
For simplicity of notation, we prove the proposition when \({\mathbf {P}}=\mathbf {ZZ}\) and \(J=(-\infty ,\infty )=\mathbf {ZZ}\). The proof straightforwardly extends to any connected, locally finite poset \({\mathbf {P}}\) and \(J\in \mathbf {Con}({\mathbf {P}})\). By Theorem 2.12, we may assume that \(M=\bigoplus _{c\in C}I^{J_c}\), where \(\mathrm {barc}^{\mathbf {ZZ}}(M)=\left\{ \!\!\left\{ J_c:c\in C\right\} \!\!\right\} \). In what follows, we identify \(\mathbf {ZZ}\) with the integers \({\mathbf {Z}}\) via the bijection \((i,j)\mapsto i+j\). Therefore, by \(\bigoplus _{k\in {\mathbf {Z}}} M_{k}\) and \(\prod _{k\in {\mathbf {Z}}} M_{k}\), we will denote \(\bigoplus _{(i,j)\in \mathbf {ZZ}} M_{(i,j)}\) and \(\prod _{(i,j)\in \mathbf {ZZ}} M_{(i,j)}\) respectively.
-
(i)
The limit of M is (isomorphic to) the pair \(\left( V,(\pi _k)_{k\in {\mathbf {Z}}}\right) \) described as follows:
$$\begin{aligned} V:=\left\{ (v_k)_{k\in {\mathbf {Z}}}\in \prod _{k\in {\mathbf {Z}}} M_k:\ \forall k\in {\mathbf {Z}},\ v_{k}\sim v_{k+1} \right\} . \end{aligned}$$(11)For each \(k\in {\mathbf {Z}}\), the map \(\pi _k:V\rightarrow M_k\) is the canonical projection.
-
(ii)
The colimit of M is (isomorphic to) the pair \(\left( U, (i_k)_{k\in {\mathbf {Z}}}\right) \) described as follows: U is the quotient vector space \(\left( \bigoplus _{k\in {\mathbf {Z}}} M_k\right) /W\), where W is the subspace of the direct sum \(\bigoplus _{k\in {\mathbf {Z}}} M_k\) which is generated by the vectors of the form \((\cdots ,0,\ldots ,0, v_k, -v_{k+1},0,\ldots ,0,\cdots )\) with \(v_k\sim v_{k+1}\) (Notation E.2). Let q be the quotient map from \(\bigoplus _{k\in {\mathbf {Z}}} M_k\) to \(U=\left( \bigoplus _{k\in {\mathbf {Z}}}M_k\right) /W\). For \(k\in {\mathbf {Z}}\), let the map \(\bar{i_k}:M_k\rightarrow \bigoplus _{k\in {\mathbf {Z}}} M_k\) be the canonical injection. Then \(i_k:M_k\rightarrow U\) is the composition \(q\circ \bar{i_k}\).
Let \(0\in {\mathbf {Z}}\). Since the canonical map \(\psi _M:\varprojlim M \rightarrow \varinjlim M\) is equal to \(i_0 \circ \pi _0\), it suffices to show that the dimension of the vector space \(\mathrm {im}(i_0\circ \pi _0)\) is equal to the cardinality of \((-\infty ,\infty )_\mathbf {ZZ}\) in \(\mathrm {barc}^{\mathbf {ZZ}}(M)\).
If \(M_0\) is the zero space, then it is clear that there is no \((-\infty ,\infty )_\mathbf {ZZ}\) in \(\mathrm {barc}^{\mathbf {ZZ}}(M)\) and that \(\mathrm {im}(\pi _0)=0\). Therefore, \(\mathrm {im}(i_0\circ \pi _0)=0\), and the statement directly follows.
Assume that \(M_0\) is not trivial. Define
Since \(M_0\) is a finite dimensional vector space, \(\left|C_0\right|=\dim (M_0)\) is finite and hence we can write \(C_0=\{c_1,\ldots ,c_m\}\), where \(\dim (M_0)=m\). Also, we can write \(M_0\cong \bigoplus _{j=1}^m{\mathbb {F}}_j\), where each \({\mathbb {F}}_j={\mathbb {F}}\) is the component of the interval module \(I^{J_{c_j}}\) at \(0\in \mathbf {ZZ}\). We identify \(M_0\) with \( \bigoplus _{j=1}^m{\mathbb {F}}_j\). Then, we claim that
We prove this equality at the end of the proof.
For \(j=1,\ldots ,m\), let \(e_j:=(0,\ldots ,0,\underset{j-\text{ th }}{1},0,\ldots ,0)\in \bigoplus _{j=1}^m{\mathbb {F}}_j\). By equation (12), the set \(B_0=\{e_j: J_{c_j} \text{ is } l\text{-type }\}\) is a basis of \(\mathrm {im}(\pi _0)\). Therefore, the dimension of \(\mathrm {im}(i_0\circ \pi _0)\) is equal to the dimension of the space that is spanned by the image of \(B_0\) under the map \(i_0:M_0\rightarrow U\). By invoking item (ii) above, if \(J_{c_j}\ne (-\infty ,\infty )_\mathbf {ZZ}\), it follows that \(i_0(e_j)=0\in U\).
Let \(C_0^{\text{ full }}:=\{c\in C: J_c=(-\infty ,\infty )_{\mathbf {ZZ}}\}\), which is a subset of \(C_0=\{c_1,\ldots ,c_m\}\). Assuming that \(C_0^{\text{ full }}\ne \emptyset \), suppose that \(C_0^{\text{ full }}=\{c_1,\ldots ,c_n\}\) for some \(n\le m\) without loss of generality. Invoking item (ii) above, the set \(\{i_0(e_{1}),\ldots , i_0(e_{n})\}\) is linearly independent in U. Therefore, we have that
as desired.
Finally we prove equation (12). First we prove “\(\subset \)”. Recall item (i) above and pick any \(v=(v_k)_{k\in {\mathbf {Z}}}\in V\). Then \(\pi _0(v)=v_0=(a_1,\ldots ,a_m)\). Suppose that \(c_j\in C_0\) is such that \(J_{c_j}\) is not l-type. This implies that the interval \(J_{c_j}\) has an endpoint \(r=(r_1,r_2)\in \mathbf {ZZ}\) where \(r_1=r_2\in {\mathbf {Z}}\) and then either \((r_1+1,r_1)\) or \((r_1,r_1-1)\) is not in \(J_{c_1}\). Without loss of generality, assume that \(s=(r_1+1,r_1)\in \mathbf {ZZ}\) does not belong to \(J_{c_1}\). By the choice of \(v=(v_k)_{k\in {\mathbf {Z}}}\), we have \(v_0\sim v_1\sim \ldots \sim v_{2r_1}\sim v_{2r_1+1}\), and this leads to that \(a_j=0\).
Next we show “\(\supset \)”. Pick any \((a_1,\ldots ,a_m)\) in the RHS of equation (12). For each \(k\in {\mathbf {Z}}\), define \(v_k\in M_k\) using the canonical expression:
where \(b_c=0\) if \(c\not \in C_0\) and \(b_c=a_j\) if \(c=c_j\in C_0=\{c_1,\ldots ,c_m\}\). Let \(v:=(v_k)_{k\in {\mathbf {Z}}}\). Then, one can check that \(\pi _0(v)=(a_1,\ldots ,a_m)\), completing the proof. \(\square \)
Constructible persistence modules and re-indexing
Patel generalizes the persistence diagram of Cohen-Steiner, Edelsbrunner, and Harer to the setting of constructible \({\mathbf {R}}\)-indexed diagrams valued in a symmetric monoidal category (Patel 2018).
Definition F.1
(Constructible \({\mathbf {R}}\)-indexed diagrams) Let \(S=\{s_1<s_2<\ldots <s_n\}\) be a finite set of \({\mathbf {R}}\). A diagram \(F:{\mathbf {R}}\rightarrow {\mathscr {C}}\) is S-constructible if
-
(i)
for \(p\le q<s_1\), \(\varphi _F(p, q)\) is the identity on e,
-
(ii)
for \(s_i\le p\le q< s_{i+1}\), \(\varphi _F(p, q)\) is an isomorphism,
-
(iii)
for \(s_n\le p\le q\), \(\varphi _F(p, q)\) is an isomorphism.
If \(G:{\mathbf {R}}\rightarrow {\mathscr {C}}\) is T-constructible for some finite set \(T\subset {\mathbf {R}}\), then we call G constructible.
1.1 Re-indexing an \({\mathbf {R}}\)-indexed diagram by \({\mathbf {Z}}\)
Let \(F:{\mathbf {R}}\rightarrow {\mathscr {C}}\) be S-constructible with \(S=\{s_1<s_2<\ldots <s_n\}\). A functor \(D(F):{\mathbf {Z}}\rightarrow {\mathscr {C}}\) that contains all the algebraic information of F would be defined as follows:
When \({\mathscr {C}}=\mathbf {vec}\), there exists a bijection from the barcode of F to that of D(F) via \([s_i,s_j)\mapsto [i,j-1]\) for \(1\le i<j\le n\), and \([s_i,\infty ) \mapsto [i,\infty )\) for \(1\le i\le n\).
1.2 Re-indexing a \({\mathbf {Z}}\)-indexed diagram by \(\mathbf {ZZ}\)
Let \(F:{\mathbf {Z}}\rightarrow {\mathscr {C}}\). Let us define \(L(F):\mathbf {ZZ}\rightarrow {\mathscr {C}}\) as follows (Botnan and Lesnick 2018, Remark 4.5):
When \({\mathscr {C}}=\mathbf {vec}\) and \(F_i=0\) for \(i\le 0\), there exists a bijection from the barcode of F to that of L(F) via \([a,b]\mapsto [a,b+1)_{\mathbf {ZZ}}\) for \(a,b\in {\mathbf {Z}}\) with \(a\le b\), and \([a,\infty )\mapsto [a,\infty )_{\mathbf {ZZ}}\) for \(a\in {\mathbf {Z}}\).
Rigorous definition of Reeb graphs
In order to introduce the definition of Reeb graphs, we begin by introducing the notion of Morse type functions from Botnan and Lesnick (2018), Carlsson et al. (2009).
Definition G.1
(Morse type functions) Let X be a topological space. We say that a continuous function \(p:X\rightarrow {\mathbf {R}}\) is of Morse type if
-
(i)
There exists a strictly increasing function \({\mathscr {G}}:{\mathbf {Z}}\rightarrow {\mathbf {R}}\) such that \(\lim _{i\rightarrow +\infty }{\mathscr {G}}(i)=\infty \), \(\lim _{i\rightarrow -\infty }{\mathscr {G}}(i)=-\infty \) and such that for each open interval \(I_i=({\mathscr {G}}(i),{\mathscr {G}}(i+1))\) there exist a topological space \(Y_i\) and a homeomorphism \(h_i:I_i\times Y_i\rightarrow p^{-1}(I_i)\) with \(f\circ h_i\) being the projection \(I_i\times Y_i \rightarrow I_i\).
-
(ii)
Each homeomorphism \(h_i:I_i\times Y_i \rightarrow p^{-1}(I_i)\) extends to a continuous function
$$\begin{aligned} {\bar{h}}_i:\bar{I_i}\times Y_i \rightarrow p^{-1}(\bar{I_i}), \end{aligned}$$where \(\bar{I_i}\) denotes the closure of \(I_i\).
-
(iii)
For all \(t\in {\mathbf {R}}\) and \(k\in {\mathbf {Z}}_+\), \(\dim \mathrm {H}_k\left( p^{-1}(t)\right) <\infty \).
We introduce the definition of Reeb graphs (De Silva et al. 2016).
Definition G.2
(Reeb graphs) Let X be a topological space and let \(p:X\rightarrow {\mathbf {R}}\) be of Morse type. If the topological spaces \(Y_i\) as in Definition G.1 (i) are finite sets of points with the discrete topology, then the pair (X, p) is said to be a Reeb graph.Footnote 14 See Fig. 5 (A) for an illustrative example.
Rights and permissions
About this article
Cite this article
Kim, W., Mémoli, F. Generalized persistence diagrams for persistence modules over posets. J Appl. and Comput. Topology 5, 533–581 (2021). https://doi.org/10.1007/s41468-021-00075-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41468-021-00075-1
Keywords
- Generalized persistence diagrams
- Generalized persistence modules
- Zigzag persistence
- Reeb graphs
- Rank invariant
- Limits and colimits