Skip to main content
Log in

Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

While the spatial topological persistence is naturally constructed from a radius-based filtration, it has hardly been derived from a temporal filtration. Most topological models are designed for the global topology of a given object as a whole. There is no method reported in the literature for the topology of an individual component in an object to the best of our knowledge. For many problems in science and engineering, the topology of an individual component is important for describing its properties. We propose evolutionary homology (EH) constructed via a time evolution-based filtration and topological persistence. Our approach couples a set of dynamical systems or chaotic oscillators by the interactions of a physical system, such as a macromolecule. The interactions are approximated by weighted graph Laplacians. Simplices, simplicial complexes, algebraic groups and topological persistence are defined on the coupled trajectories of the chaotic oscillators. The resulting EH gives rise to time-dependent topological invariants or evolutionary barcodes for an individual component of the physical system, revealing its topology-function relationship. In conjunction with Wasserstein metrics, the proposed EH is applied to protein flexibility analysis, an important problem in computational biophysics. Numerical results for the B-factor prediction of a benchmark set of 364 proteins indicate that the proposed EH outperforms all the other state-of-the-art methods in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Here, traditional means the Vietoris–Rips filtration on the point cloud induced by the embedding.

References

  • Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)

    MathSciNet  MATH  Google Scholar 

  • Adcock, A., Carlsson, E., Carlsson, G.: The ring of algebraic functions on persistence bar codes. Homol. Homotopy Appl. 18(1), 381–402 (2016). https://doi.org/10.4310/HHA.2016.v18.n1.a21

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmed, M., Fasy, B.T., Wenk, C.: Local persistent homology based distance between maps. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 43–52. ACM (2014)

  • Arai, M., Brandt, V., Dabaghian, Y.: The effects of theta precession on spatial learning and simplicial complex dynamics in a topological model of the hippocampal spatial map. PLoS Comput. Biol. 10(6), e1003651 (2014)

    Google Scholar 

  • Bahar, I., Atilgan, A.R., Erman, B.: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 2(3), 173–181 (1997)

    Google Scholar 

  • Bauer, U.: Ripser: efficient computation of Vietoris-Rips persistence barcodes (2019). arXiv:1908.02518

  • Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 31–38. SIAM (2014)

  • Bendich, P., Harer, J.: Persistent intersection homology. Found. Comput. Math. 11(3), 305–336 (2011)

    MathSciNet  MATH  Google Scholar 

  • Berwald, J.J., Gidea, M., Vejdemo-Johansson, M.: Automatic recognition and tagging of topologically different regimes in dynamical systems. Discontin. Nonlinearity Complex. 3(4), 413–426 (2014)

    MATH  Google Scholar 

  • Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014). https://doi.org/10.1007/s00454-014-9573-x

    Article  MathSciNet  MATH  Google Scholar 

  • Bubenik, P., de Silva, V., Scott, J.: Metrics for generalized persistence modules. Found. Comput. Math. 15(6), 1501–1531 (2015)

    MathSciNet  MATH  Google Scholar 

  • Cang, Z., Wei, G.W.: Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology. Bioinformatics 33, 3549–3557 (2017a)

  • Cang, Z., Wei, G.W.: Integration of element specific persistent homology and machine learning for protein–ligand binding affinity prediction. Int. J. Numer. Methods Biomed. Eng. 34(2), e2914 (2017b)

  • Cang, Z., Wei, G.W.: TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput. Biol. 13(7), e1005690 (2017c). https://doi.org/10.1371/journal.pcbi.1005690

  • Cang, Z., Mu, L., Wu, K., Opron, K., Xia, K., Wei, G.W.: A topological approach for protein classification. Mol. Based Math. Biol. 3, 140–162 (2015)

    MATH  Google Scholar 

  • Cang, Z., Mu, L., Wei, G.W.: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput. Biol. 14(1), e1005929 (2018). https://doi.org/10.1371/journal.pcbi.1005929

    Article  Google Scholar 

  • Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009). https://doi.org/10.1090/S0273-0979-09-01249-X. Survey

    Article  MathSciNet  MATH  Google Scholar 

  • Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In: Proceedings 25th Annual ACM Symposium on Computational Geometry, pp. 247–256 (2009)

  • Carlsson, G., De Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–405 (2010)

    MathSciNet  MATH  Google Scholar 

  • Carlsson, G., Verovšek, S.K.: Symmetric and \(r\)-symmetric tropical polynomials and rational functions. J. Pure Appl. Algebra 220(11), 3610–3627 (2016)

    MathSciNet  MATH  Google Scholar 

  • Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)

    MathSciNet  MATH  Google Scholar 

  • Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.J.: Persistence barcodes for shapes. Int. J. Shape Model. 11(02), 149–187 (2005)

    MATH  Google Scholar 

  • Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings 25th Annual ACM Symposium on Computational Geometry, pp. 237–246 (2009)

  • Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in Riemannian manifolds. J. ACM (JACM) 60(6), 41 (2013)

    MathSciNet  MATH  Google Scholar 

  • Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-42545-0

    Book  MATH  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    MathSciNet  MATH  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009a)

    MathSciNet  MATH  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Morozov, D.: Persistent homology for kernels, images, and cokernels. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA vol. 09, pp. 1011–1020 (2009b)

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \(L_p\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    MathSciNet  MATH  Google Scholar 

  • Curto, C.: What can topology tell us about the neural code? Bull. Am. Math. Soc. 54(1), 63–78 (2017)

    MathSciNet  MATH  Google Scholar 

  • Curto, C., Itskov, V.: Cell groups reveal structure of stimulus space. PLoS Comput. Biol. 4(10), e1000205 (2008). https://doi.org/10.1371/journal.pcbi.1000205

    Article  MathSciNet  Google Scholar 

  • Dabaghian, Y., Mémoli, F., Frank, L., Carlsson, G.: A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Comput. Biol. 8(8), e1002581 (2012)

    Google Scholar 

  • de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45, 737–759 (2011)

    MathSciNet  MATH  Google Scholar 

  • de Silva, V., Munch, E., Stefanou, A.: Theory of interleavings on categories with a flow. Theory Appl. Categ. 33(21), 583–607 (2018)

    MathSciNet  MATH  Google Scholar 

  • Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, pp. 345–354 (2014)

  • Di Fabio, B., Landi, C.: A Mayer–Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions. Found. Comput. Math. 11(5), 499–527 (2011)

    MathSciNet  MATH  Google Scholar 

  • Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  • Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    MathSciNet  MATH  Google Scholar 

  • Fasy, B.T., Wang, B.: Exploring persistent local homology in topological data analysis. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6430–6434. IEEE (2016)

  • Frosini, P.: A distance for similarity classes of submanifolds of a Euclidean space. Bull. Aust. Math. Soc. 42(3), 407–416 (1990)

    MathSciNet  MATH  Google Scholar 

  • Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recogn. Image Anal. 9(4), 596–603 (1999)

    Google Scholar 

  • Gabriel, P.: Unzerlegbare darstellungen i. Manuscr. Math. 6(1), 71–103 (1972). https://doi.org/10.1007/BF01298413

    Article  MathSciNet  MATH  Google Scholar 

  • Gameiro, M., Mischaikow, K., Kalies, W.: Topological characterization of spatial-temporal chaos. Phys. Rev. E 70(3), 035203 (2004)

    MathSciNet  Google Scholar 

  • Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mischaikow, K., Nanda, V.: A topological measurement of protein compressibility. Jpn. J. Ind. Appl. Math. 32(1), 1–17 (2015)

    MathSciNet  MATH  Google Scholar 

  • Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45, 61–75 (2008)

    MathSciNet  MATH  Google Scholar 

  • Ghrist, R.: Elementary Applied Topology. Createspace Seattle (2014)

  • Go, N., Noguti, T., Nishikawa, T.: Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. 80, 3696–3700 (1983)

    Google Scholar 

  • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Hu, G., Yang, J., Liu, W.: Instability and controllability of linearly coupled oscillators: Eigenvalue analysis. Phys. Rev. E 58, 4440–4453 (1998)

    Google Scholar 

  • Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, Applied Mathematical Sciences, vol. 157. Springer, New York (2004)

    MATH  Google Scholar 

  • Kališnik, S.: Tropical coordinates on the space of persistence barcodes. Found. Comput. Math. (2018). https://doi.org/10.1007/s10208-018-9379-y

    Article  MathSciNet  MATH  Google Scholar 

  • Kasson, P.M., Zomorodian, A., Park, S., Singhal, N., Guibas, L.J., Pande, V.S.: Persistent voids: a new structural metric for membrane fusion. Bioinformatics 23, 1753–1759 (2007)

    Google Scholar 

  • Khasawneh, F.A., Munch, E.: Exploring equilibria in stochastic delay differential equations using persistent homology. In: Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 17–20 August 2014, Buffalo, NY, USA. Paper no. DETC2014/VIB-35655 (2014)

  • Khasawneh, F.A., Munch, E.: Chatter detection in turning using persistent homology. Mech. Syst. Signal Process. 70–71, 527–541 (2016). https://doi.org/10.1016/j.ymssp.2015.09.046

    Article  Google Scholar 

  • Khasawneh, F.A., Munch, E.: Utilizing Topological Data Analysis for Studying Signals of Time-Delay Systems, pp. 93–106. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-53426-8_7

    Book  MATH  Google Scholar 

  • Kramár, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M.F., Mischaikow, K.: Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology. Physica D 334, 82–98 (2016)

    MathSciNet  MATH  Google Scholar 

  • Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Probl. 27(12), 124007 (2011)

    MathSciNet  MATH  Google Scholar 

  • Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discrete & Comput. Geom. 50(2), 330–353 (2013). https://doi.org/10.1007/s00454-013-9529-6

    Article  MathSciNet  MATH  Google Scholar 

  • Mischaikow, K., Mrozek, M., Reiss, J., Szymczak, A.: Construction of symbolic dynamics from experimental time series. Phys. Rev. Lett. 82(6), 1144 (1999)

    Google Scholar 

  • Munch, E.: A user’s guide to topological data analysis. J. Learn. Anal. 4(2), 47–61 (2017). https://doi.org/10.18608/jla.2017.42.6

    Article  Google Scholar 

  • Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., Harer, J., et al.: Probabilistic Fréchet means for time varying persistence diagrams. Electron. J. Stat. 9(1), 1173–1204 (2015)

    MathSciNet  MATH  Google Scholar 

  • Nanda, V., Sazdanović, R.: Simplicial Models and Topological Inference in Biological Systems, pp. 109–141. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-40193-0_6

    Book  MATH  Google Scholar 

  • Opron, K., Xia, K., Wei, G.W.: Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis. J. Chem. Phys. 140, 234105 (2014)

    Google Scholar 

  • Opron, K., Xia, K., Wei, G.W.: Communication: Capturing protein multiscale thermal fluctuations. J. Chem. Phys. 142(211101) (2015)

  • Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)

    MathSciNet  MATH  Google Scholar 

  • Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017). https://doi.org/10.1140/epjds/s13688-017-0109-5

    Article  Google Scholar 

  • Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis (Mathematical Surveys and Monographs). American Mathematical Society, Providence (2017)

    Google Scholar 

  • Oudot, S.Y., Sheehy, D.R.: Zigzag zoology: rips zigzags for homology inference. Found. Comput. Math. 15(5), 1151–1186 (2015)

    MathSciNet  MATH  Google Scholar 

  • Park, J.K., Jernigan, R., Wu, Z.: Coarse grained normal mode analysis vs. refined gaussian network model for protein residue-level structural fluctuations. Bull. Math. Biol. 75(1), 124–160 (2013)

    MathSciNet  MATH  Google Scholar 

  • Perea, J.A.: Persistent homology of toroidal sliding window embeddings. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2016). https://doi.org/10.1109/icassp.2016.7472916

  • Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2015)

    MathSciNet  MATH  Google Scholar 

  • Perea, J.A., Deckard, A., Haase, S.B., Harer, J.: Sw1pers: sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinform. 16(1), 257 (2015)

    Google Scholar 

  • Perea, J.A., Munch, E., Khasawneh, F.A.: Approximating continuous functions on persistence diagrams using template functions (2019). arXiv:1902.07190

  • Radivojac, P., Obradovic, Z., Smith, D.K., Zhu, G., Vucetic, S., Brown, C.J., Lawson, J.D., Dunker, A.K.: Protein flexibility and intrinsic disorder. Protein Sci. 13(1), 71–80 (2004)

    Google Scholar 

  • Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4741–4748 (2015)

  • Robins, V.: Towards computing homology from finite approximations. Topol. Proc. 24, 503–532 (1999)

    MathSciNet  MATH  Google Scholar 

  • Robins, V., Meiss, J.D., Bradley, E.: Computing connectedness: an exercise in computational topology. Nonlinearity 11(4), 913 (1998)

    MathSciNet  MATH  Google Scholar 

  • Robins, V., Meiss, J.D., Bradley, E.: Computing connectedness: disconnectedness and discreteness. Physica D 139(3–4), 276–300 (2000). https://doi.org/10.1016/S0167-2789(99)00228-6

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, M.: Topological Signal Processing. Springer, Berlin (2014)

    MATH  Google Scholar 

  • Singh, G., Mémoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.L.: Topological analysis of population activity in visual cortex. J. Vis. 8(8), 11–11 (2008)

    Google Scholar 

  • Stolz, B.J., Harrington, H.A., Porter, M.A.: Persistent homology of time-dependent functional networks constructed from coupled time series. Chaos Interdiscip. J. Nonlinear Sci. 27(4), 047410 (2017)

    MathSciNet  Google Scholar 

  • Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: a research software package for persistent (co)homology. Software available at http://code.google.com/p/javaplex (2011)

  • Tralie, C.J., Perea, J.A.: (Quasi) periodicity quantification in video data, using topology. SIAM J. Imaging Sci. 11(2), 1049–1077 (2018)

    MathSciNet  MATH  Google Scholar 

  • Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discrete Comput. Geom. 52(1), 44–70 (2014). https://doi.org/10.1007/s00454-014-9604-7

    Article  MathSciNet  MATH  Google Scholar 

  • Vejdemo-Johansson, M., Pokorny, F.T., Skraba, P., Kragic, D.: Cohomological learning of periodic motion. Appl. Algebra Eng. Commun. Comput. 26(1–2), 5–26 (2015)

    MathSciNet  MATH  Google Scholar 

  • Wang, B., Wei, G.W.: Object-oriented persistent homology. J. Comput. Phys. 305, 276–299 (2016)

    MathSciNet  MATH  Google Scholar 

  • Wei, G.W., Zhan, M., Lai, C.H.: Tailoring wavelets for chaos control. Phys. Rev. Lett. 89, 284103 (2002)

    Google Scholar 

  • Xia, K., Feng, X., Tong, Y., Wei, G.W.: Persistent homology for the quantitative prediction of fullerene stability. J. Comput. Chem. 36(6), 408–422 (2015)

    Google Scholar 

  • Xia, K., Wei, G.W.: Molecular nonlinear dynamics and protein thermal uncertainty quantification. Chaos Interdiscip. J. Nonlinear Sci. 24, 013103 (2014a)

    MathSciNet  MATH  Google Scholar 

  • Xia, K., Wei, G.W.: Persistent homology analysis of protein structure, flexibility and folding. Int. J. Numer. Methods Biomed. Eng. 30, 814–844 (2014b)

    MathSciNet  Google Scholar 

  • Xia, K., Wei, G.W.: Multidimensional persistence in biomolecular data. J. Comput. Chem. 36(20), 1502–1520 (2015)

    Google Scholar 

  • Xia, K., Zhao, Z., Wei, G.W.: Multiresolution topological simplification. J. Comput. Biol. 22(9), 887–891 (2015)

    Google Scholar 

  • Yang, L.W., Chng, C.P.: Coarse-grained models reveal functional dynamics-I. elastic network models-theories, comparisons and perspectives. Bioinform. Biol. Insights 2, 25–45 (2008)

    Google Scholar 

  • Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Wei Wei.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by NSF Grants DMS-1721024, DMS-1761320, and IIS1900473, NIH Grant GM126189, Pfizer and Bristol-Myers Squibb. The work of EM was supported in part by NSF grants DMS-1800446, CMMI-1800466, CCF-1907591, and DEB-1904267.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cang, Z., Munch, E. & Wei, GW. Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis. J Appl. and Comput. Topology 4, 481–507 (2020). https://doi.org/10.1007/s41468-020-00057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-020-00057-9

Keywords

Mathematics Subject Classification

Navigation