Skip to main content

Minimal unimodal decomposition on trees

Abstract

The decomposition of a density function on a domain into a minimal sum of unimodal components is a fundamental problem in statistics, leading to the topological invariant of unimodal category of a density. This paper gives an efficient algorithm for the construction of a minimal unimodal decomposition of a tame density function on a finite metric tree.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    That is, using the language of this paper.

References

  1. Baryshnikov, Y., Ghrist, R.: Unimodal category and topological statistics. In: Proceedings on NOLTA (2011)

  2. Behboodian, J.: On the modes of a mixture of two normal distributions. Technometrics 12, 131–139 (1970)

    Article  Google Scholar 

  3. Carlsson, G., Mémoli, F.: Classifying clustering schemes. Found. Comput. Math. 13(2), 221–252 (2013)

    MathSciNet  Article  Google Scholar 

  4. Carreira-Perpinan, M., Williams, C.: On the number of modes of a Gaussian mixture. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space Methods in Computer Vision. Lecture Notes in Computer Science, vol. 2695, pp. 625–640. Springer, Berlin (2003)

    Chapter  Google Scholar 

  5. Cornea, O., Lupton, G., Oprea, J., Tanré, D.: Lusternik–Schnirelmann category. Am. Math. Soc. (2003)

  6. Eisenberger, I.: Genesis of bimodal distributions. Technometrics 6, 357–363 (1964)

    MathSciNet  Article  Google Scholar 

  7. Farber, M.: Topological complexity of motion planning. Discrete Comput. Geom. 29(2), 211–221 (2003)

    MathSciNet  Article  Google Scholar 

  8. Ghrist, R.: Elementary Applied Topology. Createspace, Scotts Valley (2014)

    MATH  Google Scholar 

  9. Govc, D.: Unimodal category and the monotonicity conjecture. arXiv:1709.06547 [math.AT] (2017)

  10. Huntsman, S.: Topological mixture estimation. Proc. Mach. Learn. Res. 80, 2088–2097 (2018)

    Google Scholar 

  11. Kakiuchi, I.: Unimodality conditions of the distribution of a mixture of two distributions. Math. Semin. Notes Kobe Univ. 9, 315–325 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Kemperman, J.: Mixtures with a limited number of modal intervals. Ann. Stat. 19, 2120–2144 (1991)

    MathSciNet  Article  Google Scholar 

  13. Kleinberg, J.: An impossibility theorem for clustering. In: Proceedings on NIPS, pp. 446–453 (2002)

  14. Robertson, C., Fryer, J.: Some descriptive properties of normal mixtures. Skand. Aktuarietidskr. 1969, 137–146 (1969)

    MathSciNet  MATH  Google Scholar 

  15. Singh, G., Mémoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional data sets and 3d object recognition. In: SPBG, pp. 91–100 (2007)

Download references

Acknowledgements

This research was done while YB was visiting the Departments of Mathematics and ESE of the University of Pennsylvania—the hospitality of both departments is warmly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuliy Baryshnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work supported by the National Science Foundation via DMS-1622370. Work supported by the Office of the Assistant Secretary of Defense Research and Engineering through ONR N00014-16-1-2010.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baryshnikov, Y., Ghrist, R. Minimal unimodal decomposition on trees. J Appl. and Comput. Topology 4, 199–209 (2020). https://doi.org/10.1007/s41468-019-00046-7

Download citation

Keywords

  • Unimodal decomposition
  • Unimodal category
  • Topological data analysis

Mathematics Subject Classification

  • 58E05
  • 62G08