A comparison framework for interleaved persistence modules

  • Shaun Harker
  • Miroslav Kramár
  • Rachel LevangerEmail author
  • Konstantin Mischaikow


We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick (in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to prove a generalization of the algebraic stability theorem for \({\mathbb {R}}\)-indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance.


Persistence module Persistence diagram Persistent homology Error bounds Topological data analysis 

Mathematics Subject Classification

55N35 55U10 65G99 



R. L. would like to thank Charles Weibel, Michael Lesnick, and Ulrich Bauer for the many insightful discussions that led to the results presented in this paper. The authors also thank the anonymous reviewers for their suggested corrections. On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Bauer, U., Lesnick, M.: Induced matchings of barcodes and the algebraic stability of persistence. In: Proceedings of the Thirtieth Annual Symposium Computational Geometry p. 355 (2014)Google Scholar
  2. Bauer, U., Lesnick, M.: Persistence diagrams as diagrams: A categorification of the stability theorem. (2016) arXiv:1610.10085
  3. Botnan, M., Spreemann, G.: Approximating persistent homology in euclidean space through collapses. Appl. Algebra Eng. Commun. Comput. 26(1–2), 73–101 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bubenik, P., de Silva, V., Scott, J.: Metrics for generalized persistence modules. Found. Comput. Math. 15(6), 1501–1531 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bubenik, P., de Silva, V., Scott, J.: Categorification of gromov-hausdorff distance and interleaving of functors (2017). arXiv:1707.06288
  7. Buchet, M., Chazal, F., Oudot, S.Y., Sheehy, D.R.: Efficient and robust persistent homology for measures. Comput. Geom. 58, 70–96 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, LJ., Oudot, SY.: Proximity of persistence modules and their diagrams. In: Proceedings of the twenty-fifth annual symposium on computational geometry, ACM, New York, NY, USA, SCG ’09, pp. 237–246, (2009).
  9. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules (SpringerBriefs in Mathematics). Springer, Berlin (2016)CrossRefzbMATHGoogle Scholar
  10. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  11. Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(05), 1550066 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  12. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, p. xii+298. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  13. Dey, TK., Fan, F., Wang, Y.: Graph induced complex on point data. In: Proceedings of the twenty-ninth annual symposium on computational geometry, ACM, New York, NY, USA, SoCG ’13, pp 107–116, (2013)
  14. Dey, TK., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Proceedings of the thirtieth annual symposium on computational geometry, ACM, New York, NY, USA, SOCG’14, pp 345:345–345:354, (2014)
  15. Edelsbrunner, H., Harer, J.L.: Computational Topology : an Introduction. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  16. Friedman, G.: Survey article: an elementary illustrated introduction to simplicial sets. Rocky Mountain J. Math. 42(2), 353–423 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kramár, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M.F., Mischaikow, K.: Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology. Phys D 334, 82–98 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Oudot, S.Y.: Persistence Theory: from Quiver Representations to Data Analysis, Mathematical Surveys and Monographs, vol. 209. American Mathematical Society, Providence (2015)CrossRefzbMATHGoogle Scholar
  19. Sheehy, D.: Linear-size approximations to the vietoris? rips filtration. Discrete Comput. Geom. 49(4), 778–796 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  20. Weibel, C.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  21. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2004). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shaun Harker
    • 1
  • Miroslav Kramár
    • 2
  • Rachel Levanger
    • 3
    Email author
  • Konstantin Mischaikow
    • 1
  1. 1.Department of Mathematics, Hill Center-Busch CampusRutgers UniversityPiscatawayUSA
  2. 2.INRIA SaclayPalaiseauFrance
  3. 3.Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations