Skip to main content

Advertisement

Log in

A Review of US Army Research Contributing to Cognitive Enhancement in Military Contexts

  • Review
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

The US Department of Defense, including the Army, Air Force, Navy, and Defense Advanced Research Projects Agency (DARPA) has engaged in cognitive enhancement research and development for over a century, exploring novel pharmaceutical, dietary, neuroscientific, instructional, technological, and sleep-related enhancement strategies. The overall objective of this work is to identify safe, reliable, and robust strategies and technologies to help military personnel achieve dominance through enhanced skill acquisition, vigilance and threat detection, situation awareness, decision-making, teamwork, and emotional control. The present review provides an introductory overview of recent and current US Army research examining several approaches to cognitive enhancement. These include approaches aimed at specifically targeting neural mechanisms and processes directly responsible for enhanced task performance and include transcranial electrical stimulation (tES), augmented reality (AR), and targeted skills training. Also considered are approaches targeting nth-order mechanisms and processes that relatively indirectly affect perception, cognition, and/or emotion and include nutritional and dietary intervention, resilience, cognitive and teamwork training, peripheral nerve stimulation, and sleep modification. We detail several promising approaches and provide an overview of forward-looking research objectives pursued by the US Army. Finally, we provide an overview of some of the ethical, regulatory, methodological, technological, doctrinal, and reliability challenges facing cognitive enhancement research and constraining its immediate application to military training and operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, A. B., Bliese, P. D., Pickering, M. A., Hammermeister, J., Williams, J., Harada, C., et al. (2015). Mental skills training with basic combat training soldiers: A group-randomized trial. Journal of Applied Psychology, 100, 1752–1764. https://doi.org/10.1037/apl0000021.

    Article  PubMed  Google Scholar 

  • Alexander, P. A., Dinsmore, D. L., Fox, E., Grossnickle, E. M., Loughlin, S. M., Maggioni, L., et al. (2011). Higher order thinking and knowledge: Domain-general and domain-specific trends and future directions. In G. Schraw & D. R. Robinson (Eds.), Current perspectives on cognition, learning, and instruction. Assessment of higher order thinking skills (pp. 47–88). Charlotte, NC: IAP Information Age Publishing.

    Google Scholar 

  • Arcidiacono, S., Soares, J. W., Karl, J. P., Chrisey, L., Dancy, C. B. C., Goodson, M., Gregory, F., Hammamieh, R., Loughnane, N. K., Kokoska, R., Riddle, M., Whitaker, K., & Racicot, K. (2018). The current state and future direction of DoD gut microbiome research: a summary of the first DoD gut microbiome informational meeting. Standards in Genomic Sciences, 13, 5.

  • Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin and Review, 22, 366–377. https://doi.org/10.3758/s13423-014-0699-x.

    Article  PubMed  Google Scholar 

  • Au, J., Karsten, C., Buschkuehl, M., & Jaeggi, S. M. (2017). Optimizing transcranial direct current stimulation protocols to promote long-term learning. Journal of Cognitive Enhancement, 1, 65–72. https://doi.org/10.1007/s41465-017-0007-6.

    Article  Google Scholar 

  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47. https://doi.org/10.1109/38.963459.

    Article  Google Scholar 

  • Badran, B. W., Dowdle, L. T., Mithoefer, O. J., LaBate, N. T., Coatsworth, J., Brown, J. C., et al. (2018). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimulation, 11, 492–500. https://doi.org/10.1016/j.brs.2017.12.009.

    Article  PubMed  Google Scholar 

  • Bahrke, M. S., & Shukitt-Hale, B. (1993). Effects of altitude on mood, behaviour and cognitive functioning: A review. Sports Medicine, 16, 97–125. https://doi.org/10.2165/00007256-199316020-00003.

    Article  PubMed  Google Scholar 

  • Banderet, L. E., & Burse, R. L. (1991). Effects of high terrestrial altitude on military performance. In R. Gal & A. D. Mangelsdorff (Eds.), Handbook of Military Psychology (pp. 233–254). New York, NY: Wiley M33-M89.

    Google Scholar 

  • Ben-Menachem, E., Hamberger, A., Hedner, T., Hammond, E. J., Uthman, B. M., Slater, J., et al. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Research, 20, 221–227. https://doi.org/10.1016/0920-1211(94)00083-9.

    Article  PubMed  Google Scholar 

  • Bestmann, S., de Berker, A. O., & Bonaiuto, J. (2015). Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19(1), 13–20.

    Article  Google Scholar 

  • Bikson, M., & Rahman, A. (2013). Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 7, 688.

  • Bisagno, V., González, B., & Urbano, F. J. (2016). Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacological Research, 109, 108–118. https://doi.org/10.1016/j.phrs.2016.01.013.

    Article  PubMed  Google Scholar 

  • Blacker, K. J., Hamilton, J., Roush, G., Pettijohn, K. A., & Biggs, A. T. (2019). Cognitive training for military application: A review of the literature and practical guide. Journal of Cognitive Enhancement, 3(1), 30–51. https://doi.org/10.1007/s41465-018-0076-1.

    Article  Google Scholar 

  • Blankenbeckler, P. N., Graves, T. R., & Wampler, R. L. (2014). Designing interactive multimedia instruction to address soldiers’ learning needs. Alexandria, VA, ARI research report #1979.

  • Bonaiuto, J. J., & Bestmann, S. (2015). Understanding the nonlinear physiological and behavioral effects of tDCS through computational neurostimulation. Progress in Brain Research, 222, 75–103. https://doi.org/10.1016/bs.pbr.2015.06.013.

    Article  PubMed  Google Scholar 

  • Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15, 311–341. https://doi.org/10.1007/s11948-009-9142-5.

    Article  PubMed  Google Scholar 

  • Boyce, M. W., Gardony, A. L., Shorter, P., Horner, C., Stainrod, C. R., Flynn, J., et al. (2019). Characterizing the cognitive impact of tangible augmented reality. In International conference on human-computer interaction (pp. 416–427). Cham: Springer. https://doi.org/10.1007/978-3-030-21607-8_32.

    Chapter  Google Scholar 

  • Brandao, W. L., & Pinho, M. S. (2017). Using augmented reality to improve dismounted operators’ situation awareness. In Proceedings - IEEE virtual reality (pp. 297–298). Los Angeles, CA: IEEE. https://doi.org/10.1109/VR.2017.7892294.

    Chapter  Google Scholar 

  • Broccard, F. D., Mullen, T., Chi, Y. M., Peterson, D., Iversen, J. R., Arnold, M., Kreutz-Delgado, K., Jung, T.-P., Makeig, S., Poizner, H., Sejnowski, T., & Cauwenberghs, G. (2014). Closed-loop brain–machine–body interfaces for noninvasive rehabilitation of movement disorders. Annals of Biomedical Engineering, 42(8), 1573–1593.

  • Brou, R., Ledford, B., Stallings, G., Normand, S., & Stearns, I. (2018). Building automated assessments of interpersonal skills. In Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). Orlando, FL.

  • Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Psychophysiology, 14(8), 1133–1145. https://doi.org/10.1017/S1461145710001690.

    Article  Google Scholar 

  • Brunyé, T. T. (2015). Increasing breadth of semantic associations with left frontopolar direct current brain stimulation: A role for individual differences. Neuroreport, 26(5), 296–301.

    Article  Google Scholar 

  • Brunyé, T. T. (2018). Modulating spatial processes and navigation via transcranial electrical stimulation: A mini review. Frontiers in Human Neuroscience, 11, 649.

    Article  Google Scholar 

  • Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., Giles, G. E., & Taylor, H. A. (2010a). Acute caffeine consumption enhances the executive control of visual attention in habitual consumers. Brain and Cognition, 74(3), 186–192. https://doi.org/10.1016/j.bandc.2010.07.006.

    Article  PubMed  Google Scholar 

  • Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., & Taylor, H. a. (2010b). Caffeine modulates attention network function. Brain and Cognition, 72(2), 181–188. https://doi.org/10.1016/j.bandc.2009.07.013.

    Article  PubMed  Google Scholar 

  • Brunyé, T. T., Holmes, A., Cantelon, J., Eddy, M. D., Gardony, A. L., Mahoney, C. R., & Taylor, H. A. (2014). Direct current brain stimulation enhances navigation efficiency in individuals with low sense of direction. Neuroreport, 25, 1175–1179.

    Article  Google Scholar 

  • Brunyé, T. T., Moran, J. M., Houck, L. A., Taylor, H. A., & Mahoney, C. R. (2016). Registration errors in beacon-based navigation guidance systems: Influences on path efficiency and user reliance. International Journal of Human Computer Studies, 96, 1–11. https://doi.org/10.1016/j.ijhcs.2016.07.008.

    Article  Google Scholar 

  • Brunyé, T. T., Haga, Z. D., Houck, L. A., & Taylor, H. A. (2017a). You look lost: Understanding uncertainty and representational flexibility in navigation. In J. M. Zacks & H. A. Taylor (Eds.), Representations in mind and world: Essays inspired by Barbara Tversky (pp. 42–56). New York, NY: Routledge. https://doi.org/10.4324/9781315169781.

    Chapter  Google Scholar 

  • Brunyé, T. T., Moran, J. M., Holmes, A., Mahoney, C. R., & Taylor, H. A. (2017b). Non-invasive brain stimulation targeting the right fusiform gyrus selectively increases working memory for faces. Brain and Cognition, 113, 32–39. https://doi.org/10.1016/j.bandc.2017.01.006.

    Article  PubMed  Google Scholar 

  • Brunyé, T. T., Hussey, E. K., Gardony, A. L., Holmes, A., & Taylor, H. A. (2018a). Targeted right medial temporal lobe tDCS and associative spatial and non-spatial memory. Journal of Cognitive Enhancement, 3, 287–297.

    Article  Google Scholar 

  • Brunyé, T. T., Smith, A. M., Horner, C. B., & Thomas, A. K. (2018b). Verbal long-term memory is enhanced by retrieval practice but impaired by prefrontal direct current stimulation. Brain and Cognition, 128, 80–88.

    Article  Google Scholar 

  • Brunye, T. T., Hussey, E. K., Fontes, E. B., & Ward, N. (2019). Modulating applied task performance via transcranial electrical stimulation. Frontiers in Human Neuroscience, 13, 140.

    Article  Google Scholar 

  • Brunyé, T. T., Smith, A. M., Hendel, D., Gardony, A. L., Martis, S. B., & Taylor, H. A. (2020). Retrieval practice enhances near but not far transfer of spatial memory. Journal of Experimental Psychology: Learning Memory and Cognition, 46, 24–45. https://doi.org/10.1037/xlm0000710.

    Article  Google Scholar 

  • Burger, A. M., Verkuil, B., Van Diest, I., Van der Does, W., Thayer, J. F., & Brosschot, J. F. (2016). The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiology of Learning and Memory, 132, 49–56. https://doi.org/10.1016/j.nlm.2016.05.007.

    Article  PubMed  Google Scholar 

  • Caldwell, J. A., Prazinko, B. F., & Caldwell, J. L. (2002). Fatigue in aviation sustained operations, the utility of napping, and the problem of sleep inertia. Fort Rucker, AL. ADP013766.

  • Campbell, C., Cantrell, G., Generalao, T., Sawyer, A., & Takitch, J. (2006). Interactive multimedia instruction for US Army training. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 1105–1110). Waynesville, NC: Association for the Advancement of computing in education (AACE).

    Google Scholar 

  • Carney, N., Totten, A. M., O’Reilly, C., Ullman, J. S., Hawryluk, G. W. J., Bell, M. J., et al. (2017). Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery, 80, 6–15. https://doi.org/10.1227/NEU.0000000000001432.

    Article  PubMed  Google Scholar 

  • Carron, A. V., Martin, L. J., & Loughead, T. M. (2012). Teamwork and performance. In S. M. Murphy (Ed.), The Oxford handbook of sport and performance psychology (pp. 309–327). Oxford: Oxford University Press.

    Google Scholar 

  • CDC. (2003). Report to congress on mild traumatic brain injury in the United States: Steps to prevent a serious public health problem. Atlanta, GA.

  • Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D. R., Calhoun, V. D., et al. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. NeuroImage, 59(1), 117–128.

    Article  Google Scholar 

  • Colzato, L. S. (2018). Responsible cognitive enhancement: Neuroethical considerations. Journal of Cognitive Enhancement, 2, 331–334. https://doi.org/10.1007/s41465-018-0090-3.

    Article  Google Scholar 

  • Colzato, L. S., & Vonck, K. (2017). Transcutaneous vagus and trigeminal nerve stimulation. In L. S. Colzato (Ed.), Theory-driven approaches to cognitive enhancement (pp. 115–126). Cham: Springer.

    Chapter  Google Scholar 

  • Colzato, L. S., Ritter, S. M., & Steenbergen, L. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia, 111, 72–76. https://doi.org/10.1016/j.neuropsychologia.2018.01.003.

    Article  PubMed  Google Scholar 

  • Comperatore, C. A., Lieberman, H. R., Kirby, A. W., Adams, B., & Crowley, J. S. (1996). Melatonin efficacy in aviation missions requiring rapid deployment and night operations. Aviation Space and Environmental Medicine, 67, 520–524.

    Google Scholar 

  • Davila, M., & Hourani, L. (2018). Evaluation of HRV biofeedback as a resilience building intervention in the reserve component (BART). Chapel Hill, NC. AD1060402.

  • de Berker, A. O., Bikson, M., & Bestmann, S. (2013). Predicting the behavioral impact of transcranial direct current stimulation: Issues and limitations. Frontiers in Human Neuroscience, 7, 613. https://doi.org/10.3389/fnhum.2013.00613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doty, T. J., So, C. J., Bergman, E. M., Trach, S. K., Ratcliffe, R. H., Yarnell, A. M., et al. (2017). Limited efficacy of caffeine and recovery costs during and following 5 days of chronic sleep restriction. Sleep, 40(12), zsx171. https://doi.org/10.1093/sleep/zsx171.

    Article  Google Scholar 

  • Driskell, J. E., & Johnston, J. H. (2004). Stress exposure training. In J. A. Cannon-Bowers & E. Salas (Eds.), Making decisions under stress: Implications for individual and team training (pp. 191–217). Washington, D.C.: American Psychological Association. https://doi.org/10.1037/10278-007.

    Chapter  Google Scholar 

  • Falcone, B., Coffman, B. A., Clark, V. P., & Parasuraman, R. (2012). Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS One, 7(4), e34993. https://doi.org/10.1371/journal.pone.0034993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farah, M. J. (2015). The unknowns of cognitive enhancement. Science, 350(6259), 379–380. https://doi.org/10.1126/science.aad5893.

    Article  PubMed  Google Scholar 

  • Farina, E. K., Thompson, L. A., Knapik, J., Pasiakos, S. M., Lieberman, H. R., & McClung, J. P. (2019a). Diet quality is associated with physical performance and special forces selection. Medicine & Science in Sports & Exercise, 52, 178–186. https://doi.org/10.1249/MSS.0000000000002111.

    Article  Google Scholar 

  • Farina, E. K., Thompson, L. A., Knapik, J., Pasiakos, S. M., McClung, J. P., & Lieberman, H. R. (2019b). Physical performance, demographic, psychological, and physiological predictors of success in the U.S. Army special forces assessment and selection course. Physiology and Behavior, 210, 112647. https://doi.org/10.1016/j.physbeh.2019.112647.

    Article  PubMed  Google Scholar 

  • Fecteau, S., Knoch, D., Fregni, F., Sultani, N., Boggio, P., & Pascual-Leone, A. (2007a). Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: A direct current stimulation study. The Journal of Neuroscience, 27(46), 12500–12505. https://doi.org/10.1523/JNEUROSCI.3283-07.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Théoret, H., Boggio, P. S., & Fregni, F. (2007b). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. Journal of Neuroscience, 27, 6212–6218. https://doi.org/10.1523/JNEUROSCI.0314-07.2007.

    Article  PubMed  Google Scholar 

  • Feltman, K. A., Hayes, A. M., Bernhardt, K. A., Nwala, E., & Kelley, A. M. (2019). Viability of tDCS in military environments for performance enhancement: A systematic review. Military Medicine. https://doi.org/10.1093/milmed/usz189.

  • Fischer, R., Ventura-Bort, C., Hamm, A., & Weymar, M. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 18, 680–693. https://doi.org/10.3758/s13415-018-0596-2.

    Article  Google Scholar 

  • Gardony, A. L., Martis, S. B., Taylor, H. A., & Brunyé, T. T. (2018). Interaction strategies for effective augmented reality geo-visualization: Insights from spatial cognition. Human-Computer Interaction, 1–43. https://doi.org/10.1080/07370024.2018.1531001.

  • Gareau, M. G. (2014). Microbiota-gut-brain axis and cognitive function. In M. Lyte & J. Cryan (Eds.), Microbial endocrinology: The microbiota-gut-brain Axis in health and disease (pp. 357–371). New York, NY: Springer.

    Chapter  Google Scholar 

  • Giles, G. E., Mahoney, C. R., Brunyé, T. T., Gardony, A. L., Taylor, H. A., & Kanarek, R. B. (2012). Differential cognitive effects of energy drink ingredients: Caffeine, taurine, and glucose. Pharmacology Biochemistry and Behavior, 102(4), 569–577. https://doi.org/10.1016/j.pbb.2012.07.004.

    Article  Google Scholar 

  • Glaven, S., Racicot, K., Leary, D. H., Karl, P., Arcidiacono, S., Dancy, B. C. R., et al. (2018). The current and future state of Department of Defense (DoD) microbiome research: A summary of the inaugural DoD tri-service microbiome consortium informational meeting. MSystems, 3(4), e00086–e00018. https://doi.org/10.1186/s40793-018-0308-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodwin, G. F., Blacksmith, N., & Coats, M. R. (2018). The science of teams in the military: Contributions from over 60 years of research. American Psychologist, 73, 322–333. https://doi.org/10.1037/amp0000259.

    Article  PubMed  Google Scholar 

  • Hallal-Kirk, L., Patton, D., Johnston, J., Milham, L., Townsend, L., & Riddle, D. (2020). Training for readiness and resilience: Supplemental findings. In Advances in Human Error, Reliability, Resilience, and Performance. AHFE 2019. Advances in intelligent systems and computing. Cham: Springer.

    Google Scholar 

  • Hampton, T. (2011). Traumatic brain injury a growing problem among troops serving in Today’s wars. JAMA - Journal of the American Medical Association, 306, 477–479. https://doi.org/10.1001/jama.2011.1092.

    Article  PubMed  Google Scholar 

  • Hertwig, R., & Todd, P. M. (2005). More is not always better: The benefits of cognitive limits. In D. Hardman & L. Machi (Eds.), Thinking: Psychological perspectives on reasoning, judgment and decision making (pp. 213–231). Chichester: Wiley. https://doi.org/10.1002/047001332X.ch11.

    Chapter  Google Scholar 

  • Hills, T., & Hertwig, R. (2011). Why aren’t we smarter already: Evolutionary trade-offs and cognitive enhancements. Current Directions in Psychological Science, 20(6), 373–377. https://doi.org/10.1177/0963721411418300.

    Article  Google Scholar 

  • Jacobs, H. I. L., Riphagen, J. M., Razat, C. M., Wiese, S., & Sack, A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiology of Aging, 36(5), 1860–1867. https://doi.org/10.1016/j.neurobiolaging.2015.02.023.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10081–10086. https://doi.org/10.1073/pnas.1103228108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Javadi, A. H., Brunec, I. K., Walsh, V., Penny, W. D., & Spiers, H. J. (2014). Transcranial electrical brain stimulation modulates neuronal tuning curves in perception of numerosity and duration. NeuroImage, 102, 451–457. https://doi.org/10.1016/j.neuroimage.2014.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha, A. P., Morrison, A. B., Dainer-Best, J., Parker, S., Rostrup, N., & Stanley, E. A. (2015). Minds “at attention”: Mindfulness training curbs attentional lapses in military cohorts. PLoS One, 10, e0116889. https://doi.org/10.1371/journal.pone.0116889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, K. T., Gözenman, F., & Berryhill, M. E. (2015). The strategy and motivational influences on the beneficial effect of neurostimulation: a tDCS and fNIRS study. Neuroimage, 105, 238–247.

  • Kadosh, R. C., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22(4), r108–r111. https://doi.org/10.1016/j.cub.2012.01.013.

    Article  Google Scholar 

  • Kamimori, G. H., Karyekar, C. S., Otterstetter, R., Cox, D. S., Balkin, T. J., Belenky, G. L., & Eddington, N. D. (2002). The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. International Journal of Pharmaceutics, 234, 159–167. https://doi.org/10.1016/S0378-5173(01)00958-9.

    Article  PubMed  Google Scholar 

  • Kamimori, G. H., McLellan, T. M., Tate, C. M., Voss, D. M., Niro, P., & Lieberman, H. R. (2015). Caffeine improves reaction time, vigilance and logical reasoning during extended periods with restricted opportunities for sleep. Psychopharmacology, 232, 2031–2042. https://doi.org/10.1007/s00213-014-3834-5.

    Article  PubMed  Google Scholar 

  • Kang, E. K., Kim, D. Y., & Paik, N. J. (2012). Transcranial direct curent stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: A pilot study. Journal of Rehabilitation Medicine, 44, 346–350. https://doi.org/10.2340/16501977-0947.

    Article  PubMed  Google Scholar 

  • Karabanov, A., Thielscher, A., & Siebner, H. R. (2016). Transcranial brain stimulation: closing the loop between brain and stimulation. Current Opinion in Neurology, 29(4), 397.

  • Karau, S. J., & Williams, K. D. (1993). Social loafing: A meta-analytic review and theoretical integration. Journal of Personality and Social Psychology, 65, 681–706. https://doi.org/10.1037/0022-3514.65.4.681.

    Article  Google Scholar 

  • Killgore, W. D. S. (2010). Effects of sleep deprivation on cognition. Progress in Brain Research, 185, 105–129. https://doi.org/10.1016/B978-0-444-53702-7.00007-5.

    Article  PubMed  Google Scholar 

  • Killgore, W. D. S., Kahn-Greene, E. T., Grugle, N. L., Killgore, D. B., & Balkin, T. J. (2009). Sustaining executive functions during sleep deprivation: A comparison of caffeine, dextroamphetamine, and modafinil. Sleep, 32, 205–216. https://doi.org/10.1093/sleep/32.2.205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. https://doi.org/10.1016/j.tics.2010.05.002.

    Article  PubMed  Google Scholar 

  • Knerr, B. W. (2006). Current issues in the use of virtual simulations for dismounted soldier training. Orlando, FL. ADA473321.

  • Kochanek, P. M., Bramlett, H. M., Dixon, C. E., Dietrich, W. D., Mondello, S., Wang, K. K. W., et al. (2018). Operation brain trauma therapy: 2016 update. Military Medicine, 183, 303–312. https://doi.org/10.1093/milmed/usx184.

    Article  PubMed  Google Scholar 

  • Lackey, S. J., Salcedo, J. N., Matthews, G., & Maxwell, D. B. (2014). Virtual world room clearing: A study in training effectiveness In Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). Orlando, FL. 14045.

  • Laqua, R., Lotze, M., Leutzow, B., & Usichenko, T. (2016). fMRI evidence for a reduction in affective processing of thermal pain in responders of transcutaneous vagal nerve stimulation (TVNS). Clinical Neurophysiology, 127, e9. https://doi.org/10.1016/j.clinph.2015.10.028.

    Article  Google Scholar 

  • Li, Y., Qiu, L., Zhang, Y., Mahajan, R., & Rozner, E. (2008). Predictable performance optimization for wireless networks. In ACM SIGCOMM computer communication review (pp. 413–426). New York, NY: ACM. https://doi.org/10.1145/1402946.1403005.

    Chapter  Google Scholar 

  • Lieberman, H. R. (2007). Achieving scientific consensus in nutrition and behaviour research. Nutrition Bulletin, 32, 100–106. https://doi.org/10.1111/j.1467-3010.2007.00609.x.

    Article  Google Scholar 

  • Lieberman, H. R., Tharion, W. J., Shukitt-Hale, B., Speckman, K. L., & Tulley, R. (2002). Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. navy SEAL training. Psychopharmacology, 164, 250–261. https://doi.org/10.1007/s00213-002-1217-9.

    Article  PubMed  Google Scholar 

  • Lieberman, H. R., Stavinoha, T., McGraw, S., White, A., Hadden, L., & Marriott, B. P. (2012). Caffeine use among active duty US Army soldiers. Journal of the Academy of Nutrition and Dietetics, 112, 902–912. https://doi.org/10.1016/j.jand.2012.02.001.

    Article  PubMed  Google Scholar 

  • Lorist, M. M., & Tops, M. (2003). Caffeine, fatigue, and cognition. Brain and Cognition, 53(1), 82–94. https://doi.org/10.1016/S0278-2626(03)00206-9.

    Article  PubMed  Google Scholar 

  • Luxton, D. D., Greenburg, D., Ryan, J., Niven, A., Wheeler, G., & Mysliwiec, V. (2011). Prevalence and impact of short sleep duration in redeployed OIF soldiers. Sleep, 34(9), 1189–1195. https://doi.org/10.5665/sleep.1236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madhavan, S., & Shah, B. (2012). Enhancing motor skill learning with transcranial direct current stimulation - a concise review with applications to stroke. Frontiers in Psychiatry, 3, 66. https://doi.org/10.3389/fpsyt.2012.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madhavan, S., Weber, K. A., & Stinear, J. W. (2011). Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: Implications for rehabilitation. Experimental Brain Research, 209, 9–17. https://doi.org/10.1007/s00221-010-2511-0.

    Article  PubMed  Google Scholar 

  • Mahoney, C. R., Brunyé, T. T., Giles, G. E., Ditman, T., Lieberman, H. R., & Taylor, H. A. (2012). Caffeine increases false memory in nonhabitual consumers. Journal of Cognitive Psychology, 24(4), 420–427. https://doi.org/10.1080/20445911.2011.647905.

    Article  Google Scholar 

  • Marshall, K. R., Holland, S. L., Meyer, K. S., Martin, E. M., Wilmore, M., & Grimes, J. B. (2012). Mild traumatic brain injury screening, diagnosis, and treatment. Military Medicine, 177, 67–75.

    Article  Google Scholar 

  • McClung, H. L., Ely, M. R., Lieberman, H. R., Smith, J. E., McGraw, S. M., Niro, P. J., … Montain, S. J. (2011). A snack-based ration containing caffeine increases caloric intake and improves cognitive performance. Natick, MA. ADA545299.

  • McCormack, R. K., Kilcullen, T., Sinatra, A. M., Brown, T., & Beaubien, J. M. (2018). Scenarios for training teamwork skills in virtual environments with GIFT. In Proceedings of the Sixth Annual GIFT Symposium (p. 189). Aberdeen, MD: U.S. Army Research Laboratory.

    Google Scholar 

  • McDaniel, M. A., & Einstein, G. O. (2006). Material appropriate difficulty: A framework for determining when difficulty is desirable for improving learning. In A. F. Healy (Ed.), Decades of behavior. Experimental cognitive psychology and its applications (pp. 73–85). Washington, D.C.: American Psychological Association. https://doi.org/10.1037/10895-006.

    Chapter  Google Scholar 

  • McLellan, T. M., Caldwell, J. A., & Lieberman, H. R. (2016). A review of caffeine’s effects on cognitive, physical and occupational performance. Neuroscience and Biobehavioral Reviews, 71, 294–312. https://doi.org/10.1016/j.neubiorev.2016.09.001.

    Article  PubMed  Google Scholar 

  • McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323(5915), 800–802. https://doi.org/10.1126/science.1166102.

    Article  PubMed  Google Scholar 

  • Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. The Journal of Neuroscience, 20(6), RC65–RC65. https://doi.org/10.1523/JNEUROSCI.20-06-j0004.2000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270–291. https://doi.org/10.1037/a0028228.

    Article  PubMed  Google Scholar 

  • Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews, 37, 1702–1712.

    Article  Google Scholar 

  • Miller, N. L., Shattuck, L. G., & Matsangas, P. (2011). Sleep and fatigue issues in continuous operations: a survey of US Army officers. Behavioral Sleep Medicine, 9(1), 53–65.

  • Minzenberg, M. J., Watrous, A. J., Yoon, J. H., Ursu, S., & Carter, C. S. (2008). Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI. Science, 322(5908), 1700–1702. https://doi.org/10.1126/science.1164908.

    Article  PubMed  Google Scholar 

  • Nguyen, L., Murphy, K., & Andrews, G. (2019). Immediate and long-term efficacy of executive functions cognitive training in older adults: A systematic review and meta-analysis. Psychological Bulletin, 145, 698–733. https://doi.org/10.1037/bul0000196.

    Article  PubMed  Google Scholar 

  • Nindl, B. C., Jaffin, D. P., Dretsch, M. N., Cheuvront, S. N., Wesensten, N. J., Kent, M. L., et al. (2015). Human performance optimization metrics: Consensus findings, gaps, and recommendations for future research. Journal of Strength and Conditioning Research, 29, S221–S245. https://doi.org/10.1519/JSC.0000000000001114.

    Article  PubMed  Google Scholar 

  • Okie, S. (2005). Traumatic brain injury in the war zone. New England Journal of Medicine, 352, 2043–2047. https://doi.org/10.1056/NEJMp058102.

    Article  PubMed  Google Scholar 

  • Patton, D., Johnston, J., Gamble, K., Milham, L., Townsend, L., Riddle, D., & Phillips, H. (2018a). Training for readiness and resilience. In International conference on applied human factors and ergonomics (pp. 292–302). Cham: Springer.

    Google Scholar 

  • Patton, D., Townsend, L., Milham, L., Johnston, J., Riddle, D., & Start, A. R. (2018b). Optimizing team performance when resilience falters: An integrated training approach. In Augmented Cognition: Users and Contexts. AC 2018. Lecture Notes in Computer Science (pp. 339–349). Cham: Springer.

    Chapter  Google Scholar 

  • Pickering, C., & Kiely, J. (2019). What should we do about habitual caffeine use in athletes? Sports Medicine, 49, 833–842. https://doi.org/10.1007/s40279-018-0980-7.

    Article  PubMed  Google Scholar 

  • Raedt, R., Clinckers, R., Mollet, L., Vonck, K., El Tahry, R., Wyckhuys, T., et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. Journal of Neurochemistry, 117, 461–469. https://doi.org/10.1111/j.1471-4159.2011.07214.x.

    Article  PubMed  Google Scholar 

  • Reifman, J., Kumar, K., Wesensten, N. J., Tountas, N. A., Balkin, T. J., & Ramakrishnan, S. (2016). 2B-alert web: An open-access tool for predicting the effects of sleep/wake schedules and caffeine consumption on neurobehavioral performance. Sleep, 39(12), 2157–2159. https://doi.org/10.5665/sleep.6318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reifman, J., Ramakrishnan, S., Liu, J., Kapela, A., Doty, T. J., Balkin, T. J., et al. (2019). 2B-alert app: A mobile application for real-time individualized prediction of alertness. Journal of Sleep Research, 28(2), e12725. https://doi.org/10.1111/jsr.12725.

    Article  PubMed  Google Scholar 

  • Reivich, K. J., Seligman, M. E. P., & McBride, S. (2011). Master resilience training in the U.S. Army. American Psychologist, 66, 25–34. https://doi.org/10.1037/a0021897.

    Article  PubMed  Google Scholar 

  • Ridding, M. C., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. Journal of Physiology, 588(13), 2291–2304. https://doi.org/10.1113/jphysiol.2010.190314.

    Article  PubMed  Google Scholar 

  • Rupp, T. L., Wesensten, N. J., Bliese, P. D., & Balkin, T. J. (2009). Banking sleep: Realization of benefits during subsequent sleep restriction and recovery. Sleep, 32(3), 311–321. https://doi.org/10.1093/sleep/32.3.311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell, A., Bulkley, B., & Grafton, C. (2005). Human performance optimization and military missions. Washington, D.C. GS-10F-0297K.

  • Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23, 9–20. https://doi.org/10.1016/j.tics.2018.10.004.

    Article  PubMed  Google Scholar 

  • Salas, E., DiazGranados, D., Klein, C., Burke, C. S., Stagl, K. C., Goodwin, G. F., & Halpin, S. M. (2008). Does team training improve team performance? A meta-analysis. Human Factors, 50, 903–933. https://doi.org/10.1518/001872008X375009.

    Article  PubMed  Google Scholar 

  • Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34(50), 16605–16610.

    Article  Google Scholar 

  • Schmidt, T. S. B., Raes, J., & Bork, P. (2018). The human gut microbiome: From association to modulation. Cell, 172, 1198–1215. https://doi.org/10.1016/j.cell.2018.02.044.

    Article  PubMed  Google Scholar 

  • Schmorrow, D. D. (2005). Foundations of augmented cognition. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781482289701.

    Book  Google Scholar 

  • Sellaro, R., van Leusden, J. W. R., Tona, K. D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation enhances post-error slowing. Journal of Cognitive Neuroscience, 27(11), 2126–2132. https://doi.org/10.1162/jocn_a_00851.

    Article  PubMed  Google Scholar 

  • Sellaro, R., de Gelder, B., Finisguerra, A., & Colzato, L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex, 99, 213–223. https://doi.org/10.1016/j.cortex.2017.11.007.

    Article  PubMed  Google Scholar 

  • Shin, S. S., Dixon, C. E., Okonkwo, D. O., & Richardson, R. M. (2014). Neurostimulation for traumatic brain injury. Journal of Neurosurgery, 121, 1219–1231. https://doi.org/10.3171/2014.7.JNS131826.

    Article  PubMed  Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138, 628–654. https://doi.org/10.1037/a0027473.

    Article  PubMed  Google Scholar 

  • Shook, J. R., & Giordano, J. (2016). Neuroethics beyond normal performance enablement and self-transformative technologies. Cambridge Quarterly of Healthcare Ethics, 25, 121–140. https://doi.org/10.1017/S0963180115000377.

    Article  PubMed  Google Scholar 

  • Sluka, K. A., & Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. Journal of Pain. Churchill Livingstone Inc. https://doi.org/10.1054/jpai.2003.434.

  • Smith, D. C., Modglin, A. A., Roosevelt, R. W., Neese, S. L., Jensen, R. A., Browning, R. A., & Clough, R. W. (2005). Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. Journal of Neurotrauma, 22, 1485–1502. https://doi.org/10.1089/neu.2005.22.1485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Söderqvist, S., & Nutley, S. B. (2017). Are measures of transfer effects missing the target? Journal of Cognitive Enhancement, 1, 508–512. https://doi.org/10.1007/s41465-017-0048-x.

    Article  Google Scholar 

  • Sottilare, R. A., & Schwarz, J. (2019). Adaptive instructional systems. In Proceedings of the First International Conference AIS.

    Google Scholar 

  • Spain, R. D., Priest, H. A., & Murphy, J. S. (2012). Current trends in adaptive training with military applications: An introduction. Military Psychology, 24(2), 87–95. https://doi.org/10.1080/08995605.2012.676984.

    Article  Google Scholar 

  • Steenbergen, L., Sellaro, R., Stock, A. K., Verkuil, B., Beste, C., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. European Neuropsychopharmacology, 25, 773–778. https://doi.org/10.1016/j.euroneuro.2015.03.015.

    Article  PubMed  Google Scholar 

  • Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science, 25, 203–244. https://doi.org/10.1016/S0364-0213(01)00035-0.

    Article  Google Scholar 

  • Swets, J. A., & Bjork, R. A. (1990). Enhancing human performance: An evaluation of “new age” techniques considered by the U.S. Army. Psychological Science, 1(2), 85–96. https://doi.org/10.1111/j.1467-9280.1990.tb00074.x.

    Article  Google Scholar 

  • Taylor, H. A., & Brunyé, T. T. (2013). The cognition of spatial cognition: Domain-general within domain-specific. In B. Ross (Ed.), The psychology of learning and motivation (pp. 77–116). New York, NY: Academic Press.

    Google Scholar 

  • Tranchina, D., & Nicholson, C. (1986). A model for the polarization of neurons by extrinsically applied electric fields. Biophysical Journal, 50, 1139–1156. https://doi.org/10.1016/S0006-3495(86)83558-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyler, W. J., Boasso, A. M., Mortimore, H. M., Silva, R. S., Charlesworth, J. D., Marlin, M. A., et al. (2015). Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans. Scientific Reports, 5, 13865. https://doi.org/10.1038/srep13865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vital-Lopez, F. G., Ramakrishnan, S., Doty, T. J., Balkin, T. J., & Reifman, J. (2018). Caffeine dosing strategies to optimize alertness during sleep loss. Journal of Sleep Research, 27(5), e12711. https://doi.org/10.1111/jsr.12711.

    Article  PubMed  Google Scholar 

  • Ward, N., Paul, E., Watson, P., Cooke, G. E., Hillman, C. H., Cohen, N. J., Kramer, A. F., & Barbey, A. K. (2017). Enhanced learning through multimodal training: evidence from a comprehensive cognitive, physical fitness, and neuroscience intervention. Scientific Reports, 7(1), 1–8.

  • Weber, B., & Hertel, G. (2007). Motivation gains of inferior group members: A meta-analytical review. Journal of Personality and Social Psychology, 93, 973–993. https://doi.org/10.1037/0022-3514.93.6.973.

    Article  PubMed  Google Scholar 

  • Weisberg, S. M., Badgio, D., & Chatterjee, A. (2018). Feel the way with a vibrotactile compass: Does a navigational aid aid navigation? Journal of Experimental Psychology: Learning Memory and Cognition, 96, 1–11. https://doi.org/10.1037/xlm0000472.

    Article  Google Scholar 

  • Wesensten, N. J., Balkin, T. J., Reichardt, R. M., Kautz, M. A., Saviolakis, G. A., & Belenky, G. (2005). Daytime sleep and performance following a zolpidem and melatonin cocktail. Sleep, 28(1), 93–103. https://doi.org/10.1093/sleep/28.1.93.

    Article  PubMed  Google Scholar 

  • Wexler, A. (2016). A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States. Journal of Law and the Biosciences, 2(3), 669–696. https://doi.org/10.1093/jlb/lsv039.

    Article  Google Scholar 

  • Wexler, A. (2018). Who uses direct-to-consumer brain stimulation products, and why? A study of home users of tDCS devices. Journal of Cognitive Enhancement, 2, 114–134.

    Article  Google Scholar 

  • Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475. https://doi.org/10.1016/j.brs.2014.02.003.

    Article  PubMed  Google Scholar 

  • Wikoff, D., Welsh, B. T., Henderson, R., Brorby, G. P., Britt, J., Myers, E., et al. (2017). Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food and Chemical Toxicology, 109, 585–648. https://doi.org/10.1016/j.fct.2017.04.002.

    Article  PubMed  Google Scholar 

  • Wisher, R. A., Sabol, M. A., & Ellis, J. A. (1999). Staying sharp: Retention of military knowledge and skills. Army research institute special report #39. Alexandria, VA.

  • Wright Jr., K., Badia, P., Myers, B., & Plenzler, S. (1997). Combination of bright light and caffeine as a countermeasure for impaired alertness and performance during extended sleep deprivation. Journal of Sleep Research, 6(1), 26–35. https://doi.org/10.1046/j.1365-2869.1997.00022.x.

    Article  PubMed  Google Scholar 

  • Yeh, M., & Wickens, C. D. (2001). Display signaling in augmented reality: Effects of cue reliability and image realism on attention allocation and trust calibration. Human Factors, 43, 355–365. https://doi.org/10.1518/001872001775898269.

    Article  PubMed  Google Scholar 

  • Yeh, M., Wickens, C. D., & Seagull, F. J. (1999). Target cuing in visual search: The effects of conformality and display location on the allocation of visual attention. Human Factors, 41, 524–542. https://doi.org/10.1518/001872099779656752.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tad T. Brunyé.

Ethics declarations

Conflict of Interest

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the U.S. Army or the Department of Defense. Any citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement of approval of the products or services of these organizations. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunyé, T.T., Brou, R., Doty, T.J. et al. A Review of US Army Research Contributing to Cognitive Enhancement in Military Contexts. J Cogn Enhanc 4, 453–468 (2020). https://doi.org/10.1007/s41465-020-00167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-020-00167-3

Keywords

Navigation