The Method of Loci in Virtual Reality: Explicit Binding of Objects to Spatial Contexts Enhances Subsequent Memory Recall

Abstract

The method of loci (MoL) is a well-known mnemonic technique in which visuospatial spatial environments are used to scaffold the memorization of non-spatial information. We developed a novel virtual reality-based implementation of the MoL in which participants used three unique virtual environments to serve as their “memory palaces.” In each world, participants were presented with a sequence of 15 3D objects that appeared in front of their avatar for 20 s each. The experimental group (N = 30) was given the ability to click on each object to lock it in place, whereas the control group (N = 30) was not afforded this functionality. We found that despite matched engagement, exposure duration, and instructions emphasizing the efficacy of the mnemonic across groups, participants in the experimental group recalled 28% more objects. We also observed a strong relationship between spatial memory for objects and landmarks in the environment and verbal recall strength. These results provide evidence for spatially mediated processes underlying the effectiveness of the MoL and contribute to theoretical models of memory that emphasize spatial encoding as the primary currency of mnemonic function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Astur, R. S., Purton, A. J., Zaniewski, M. J., Cimadevilla, J., & Markus, E. J. (2016). Human sex differences in solving a virtual navigation problem. Behavioural Brain Research, 308, 236–243. https://doi.org/10.1016/j.bbr.2016.04.037.

    Article  PubMed  Google Scholar 

  2. Balch, W. R. (2005). Elaborations of introductory psychology terms: effects on test performance and subjective ratings. Teaching of Psychology, 32, 29–34.

    Article  Google Scholar 

  3. Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28, 117–148. https://doi.org/10.1207/s15326985ep2802_3.

    Article  Google Scholar 

  4. Bellmund, J. L. S., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: spatial codes for human thinking. Science, 362, eaat6766. https://doi.org/10.1126/science.aat6766.

    Article  PubMed  Google Scholar 

  5. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    Article  Google Scholar 

  6. Benn, Y., Bergman, O., Glazer, L., Arent, P., Wilkinson, I. D., Varley, R., et al. (2015). Navigating through digital folders uses the same brain structures as real world navigation. Scientific Reports, 5, 14719. https://doi.org/10.1038/srep14719.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition Knowing about knowing, (pp 185–205). Cambridge: The MIT Press.

  8. Black, J. B., Turner, T. J., & Bower, G. H. (1979). Point of view in narrative comprehension, memory, and production. Journal of Verbal Learning and Verbal Behavior, 18, 187–198. https://doi.org/10.1016/S0022-5371(79)90118-X.

    Article  Google Scholar 

  9. Bouffard, N., Stokes, J., Kramer, H. J., & Ekstrom, A. D. (2018). Temporal encoding strategies result in boosts to final free recall performance comparable to spatial ones. Memory & Cognition, 46, 17–31. https://doi.org/10.3758/s13421-017-0742-z.

    Article  Google Scholar 

  10. Bower, G. H. (1970). Analysis of a mnemonic device: modern psychology uncovers the powerful components of an ancient system for improving memory. American Scientist, 58, 496–510.

    Google Scholar 

  11. Bower, G. H., & Reitman, J. S. (1972). Mnemonic elaboration in multilist learning. Journal of Verbal Learning and Verbal Behavior, 11, 478–485.

    Article  Google Scholar 

  12. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    PubMed  Article  Google Scholar 

  13. Brehmer, Y., Li, S.-C., Straube, B., Stoll, G., von Oertzen, T., Müller, V., et al. (2008). Comparing memory skill maintenance across the life span: preservation in adults, increase in children. Psychology and Aging, 23, 227.

    PubMed  Article  Google Scholar 

  14. Briggs, G. G., Hawkins, S., & Crovitz, H. F. (1970). Bizarre images in artificial memory. Psychonomic Science, 19, 353–354. https://doi.org/10.3758/BF03328856.

    Article  Google Scholar 

  15. Brooks, J. O., Friedman, L., & Yesavage, J. A. (1993). A study of the problems older adults encounter when using a mnemonic technique. International Psychogeriatrics, 5, 57–65.

    PubMed  Article  Google Scholar 

  16. Bush, D., Barry, C., Manson, D., & Burgess, N. (2015). Using grid cells for navigation. Neuron, 87, 507–520. https://doi.org/10.1016/j.neuron.2015.07.006.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carney, R. N., & Levin, J. R. (1998). Mnemonic strategies for adult learners. In M. C. Smith & T. Pourchot (Eds.), Adult Learning and Development: Perspectives from Educational Psychology, (pp 159–175). Mahwah: Lawrence Erlbaum Associates Publishers.

  18. Chen, H.-Y., Gilmore, A. W., Nelson, S. M., & McDermott, K. B. (2017). Are there multiple kinds of episodic memory? An fMRI investigation comparing autobiographical and recognition memory tasks. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37, 2764–2775. https://doi.org/10.1523/JNEUROSCI.1534-16.2017.

    Article  Google Scholar 

  19. Cohen, J., & Cohen, J. (2003). In N. J. Mahwah (Ed.), Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah: L. Erlbaum Associates.

    Google Scholar 

  20. Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352, 1464–1468.

    PubMed  PubMed Central  Article  Google Scholar 

  21. Crovitz, H. F. (1971). The capacity of memory loci in artificial memory. Psychonomic Science, 24, 187–188. https://doi.org/10.3758/BF03335561.

    Article  Google Scholar 

  22. Cui, X., Jeter, C. B., Yang, D., Montague, P. R., & Eagleman, D. M. (2007). Vividness of mental imagery: individual variability can be measured objectively. Vision Research, 47, 474–478. https://doi.org/10.1016/j.visres.2006.11.013.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dalgleish, T., Navrady, L., Bird, E., Hill, E., Dunn, B. D., & Golden, A.-M. (2013). Method-of-loci as a mnemonic device to facilitate access to self-affirming personal memories for individuals with depression. Clinical Psychological Science: A Journal of the Association for Psychological Science, 1, 156–162. https://doi.org/10.1177/2167702612468111.

    Article  Google Scholar 

  24. Dennett, D. C. (1993). Consciousness explained. In Penguin Adult.

    Google Scholar 

  25. Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44, 109–120. https://doi.org/10.1016/j.neuron.2004.08.028.

    Article  PubMed  Google Scholar 

  26. Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83, 764–770.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211.

    PubMed  Article  Google Scholar 

  28. Ericsson, K. A., Cheng, X., Pan, Y., Ku, Y., Ge, Y., & Hu, Y. (2017). Memory skills mediating superior memory in a world-class memorist. Memory, 25, 1294–1302. https://doi.org/10.1080/09658211.2017.1296164.

    Article  PubMed  Google Scholar 

  29. Fellner, M.-C., Volberg, G., Wimber, M., Goldhacker, M., Greenlee, M. W., & Hanslmayr, S. (2016). Spatial mnemonic encoding: theta power decreases and medial temporal lobe BOLD increases co-occur during the usage of the method of loci. eNeuro, 3. https://doi.org/10.1523/ENEURO.0184-16.2016.

    PubMed  Article  Google Scholar 

  30. Fisher, N. J., & Deluca, J. W. (1997). Verbal learning strategies of adolescents and adults with the syndrome of nonverbal learning disabilities. Child Neuropsychology, 3, 192–198. https://doi.org/10.1080/09297049708400642.

    Article  Google Scholar 

  31. Foer, J. (2011). Moonwalking with Einstein: the art and science of remembering everything. New York: Penguin Press.

    Google Scholar 

  32. Fox, J., Bailenson, J., & Binney, J. (2009). Virtual experiences, physical behaviors: the effect of presence on imitation of an eating avatar. Presence Teleoperators Virtual Environ., 18, 294–303. https://doi.org/10.1162/pres.18.4.294.

    Article  Google Scholar 

  33. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806. https://doi.org/10.1038/nature03721.

    Article  PubMed  Google Scholar 

  34. Hamann, S. (2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5, 394–400. https://doi.org/10.1016/S1364-6613(00)01707-1.

    Article  PubMed  Google Scholar 

  35. Harnadek, M. C., & Rourke, B. P. (1994). Principal identifying features of the syndrome of nonverbal learning disabilities in children. Journal of Learning Disabilities, 27, 144–154. https://doi.org/10.1177/002221949402700303.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research Electronic Data Capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42, 377–381. https://doi.org/10.1016/j.jbi.2008.08.010.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11, 299–306.

    PubMed  Article  PubMed Central  Google Scholar 

  38. Hassabis, D., & Maguire, E. A. (2009). The construction system of the brain. Philosophical Transactions of the Royal Society B Biological Sciences, 364, 1263–1271.

    PubMed Central  Article  Google Scholar 

  39. Hebscher, M., Levine, B., & Gilboa, A. (2017). The precuneus and hippocampus contribute to individual differences in the unfolding of spatial representations during episodic autobiographical memory. Neuropsychologia, 110, 123–133. Chicago.

  40. Herrmann, D. J., Geisler, F. V., & Atkinson, R. C. (1973). The serial position function for lists learned by a narrative-story mnemonic. Bulletin of the Psychonomic Society, 2, 377–378. https://doi.org/10.3758/BF03334418.

    Article  Google Scholar 

  41. Horner, A. J., Bisby, J. A., Wang, A., Bogus, K., & Burgess, N. (2016). The role of spatial boundaries in shaping long-term event representations. Cognition, 154, 151–164.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Hu, Y., & Ericsson, K. A. (2012). Memorization and recall of very long lists accounted for within the long-term working memory framework. Cognitive Psychology, 64, 235–266.

    PubMed  Article  Google Scholar 

  43. Hu, Y., Ericsson, K. A., Yang, D., & Lu, C. (2009). Superior self-paced memorization of digits in spite of a normal digit span: the structure of a memorist’s skill. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 1426.

    PubMed  Article  Google Scholar 

  44. Jacobs, L. F., & Schenk, F. (2003). Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychological Review110, 285–315. https://doi.org/10.1037/0033-295X.110.2.285.

    PubMed  Article  Google Scholar 

  45. Karpicke, J. D., Butler, A. C., & Roediger, H. L., III. (2009). Metacognitive strategies in student learning: do students practise retrieval when they study on their own? Memory, 17, 471–479.

    PubMed  Article  Google Scholar 

  46. Kliegl, R., Smith, J., & Baltes, P. B. (1990). On the locus and process of magnification of age differences during mnemonic training. Developmental Psychology, 26, 894.

    Article  Google Scholar 

  47. Kondo, Y., Suzuki, M., Mugikura, S., Abe, N., Takahashi, S., Iijima, T., et al. (2005). Changes in brain activation associated with use of a memory strategy: a functional MRI study. NeuroImage, 24, 1154–1163. https://doi.org/10.1016/j.neuroimage.2004.10.033.

    Article  PubMed  Google Scholar 

  48. Kosslyn, S. M., Brunn, J., Cave, K. R., & Wallach, R. W. (1984). Individual differences in mental imagery ability: a computational analysis. Cognition, 18, 195–243. https://doi.org/10.1016/0010-0277(84)90025-8.

    Article  PubMed  Google Scholar 

  49. Lawton, C. A. (1994). Gender differences in way-finding strategies: relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765–779.

    Article  Google Scholar 

  50. Lee, I. A., & Preacher, K. J (2013). Calculation for the test of the difference between two dependent correlations with one variable in common. Available at: http://quantpsy.org. Accessed March 18 2018.

  51. Legge, E. L. G., Madan, C. R., Ng, E. T., & Caplan, J. B. (2012). Building a memory palace in minutes: equivalent memory performance using virtual versus conventional environments with the method of loci. Acta Psychologica, 141, 380–390. https://doi.org/10.1016/j.actpsy.2012.09.002.

    Article  PubMed  Google Scholar 

  52. Levin, J. R. (1983). Pictorial strategies for school learning: practical illustrations. In Cognitive Strategy Research Springer Series in Cognitive Development (pp. 213–237). New York, NY: Springer. https://doi.org/10.1007/978-1-4612-5519-2_8.

    Google Scholar 

  53. Llinás, R. R. (2001). I of the vortex: from neurons to self. Cambridge, MA: MIT press.

    Google Scholar 

  54. Llinas, R., & Ribary, U. (2001). Consciousness and the brain. Annals of the New York Academy of Sciences, 929, 166–175.

    PubMed  Article  Google Scholar 

  55. Maguire, E. A., & Mullally, S. L. (2013). The Hippocampus: a manifesto for change. Journal of Experimental Psychology. General, 142, 1180–1189. https://doi.org/10.1037/a0033650.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering: the brains behind superior memory. Nature Neuroscience, 6, 90.

    PubMed  Article  Google Scholar 

  57. Martell, R. F., & Willis, C. E. (1993). Effects of observers′ performance expectations on behavior ratings of work groups: memory or response bias? Organizational Behavior and Human Decision Processes, 56, 91–109. https://doi.org/10.1006/obhd.1993.1046.

    Article  Google Scholar 

  58. McCabe, J. A. (2015). Location, location, location! Demonstrating the mnemonic benefit of the method of loci. Teaching of Psychology, 42, 169–173. https://doi.org/10.1177/0098628315573143.

    Article  Google Scholar 

  59. McCabe, J. A., Osha, K. L., Roche, J. A., & Susser, J. A. (2013). Psychology students’ knowledge and use of mnemonics. Teaching of Psychology, 40, 183–192.

    Article  Google Scholar 

  60. Merriman, N. A., Ondřej, J., Roudaia, E., O’Sullivan, C., & Newell, F. N. (2016). Familiar environments enhance object and spatial memory in both younger and older adults. Experimental Brain Research, 234, 1555–1574.

    PubMed  Article  Google Scholar 

  61. Moè, A., & De Beni, R. (2005). Stressing the efficacy of the loci method: oral presentation and the subject-generation of the loci pathway with expository passages. Applied Cognitive Psychology, 19, 95–106.

    Article  Google Scholar 

  62. Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: the hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–134.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Mullally, S. L., & Maguire, E. A. (2014). Memory, imagination, and predicting the future: a common brain mechanism? The Neuroscientist, 20, 220–234. https://doi.org/10.1177/1073858413495091.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Murray, E. A., Wise, S. P., & Graham, K. S. (2018). Representational specializations of the hippocampus in phylogenetic perspective. Neuroscience Letters, 680, 4–12. https://doi.org/10.1016/j.neulet.2017.04.065.

    Article  PubMed  Google Scholar 

  65. Nelson, D. L., Reed, V. S., & Walling, J. R. (1976). Pictorial superiority effect. Journal of Experimental Psychology [Human Learning and Memory], 2, 523–528.

    Article  Google Scholar 

  66. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.

    Google Scholar 

  67. Paivio, A., & Csapo, K. (1973). Picture superiority in free recall: imagery or dual coding? Cognitive Psychology, 5, 176–206. https://doi.org/10.1016/0010-0285(73)90032-7.

    Article  Google Scholar 

  68. Persson, J., Herlitz, A., Engman, J., Morell, A., Sjölie, D., Wikström, J., et al. (2013). Remembering our origin: gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behavioural Brain Research, 256, 219–228. https://doi.org/10.1016/j.bbr.2013.07.050.

    Article  PubMed  Google Scholar 

  69. Preacher, K. J. (2002). Calculation for the test of the difference between two independent correlation coefficients. Available at: http://quantpsy.org. Accessed March 18, 2018.

  70. Pyc, M. A., & Rawson, K. A. (2009). Testing the retrieval effort hypothesis: does greater difficulty correctly recalling information lead to higher levels of memory? Journal of Memory and Language, 60, 437–447. https://doi.org/10.1016/j.jml.2009.01.004.

    Article  Google Scholar 

  71. Qureshi, A., Rizvi, F., Syed, A., Shahid, A., & Manzoor, H. (2014). The method of loci as a mnemonic device to facilitate learning in endocrinology leads to improvement in student performance as measured by assessments. Advances in Physiology Education, 38, 140–144. https://doi.org/10.1152/advan.00092.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  72. R Core Team. (2013). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing Available at: http://www.R-project.org/.

    Google Scholar 

  73. Rahman, Q., Andersson, D., & Govier, E. (2005). A specific sexual orientation-related difference in navigation strategy. Behavioral Neuroscience, 119, 311–316. https://doi.org/10.1037/0735-7044.119.1.311.

    Article  PubMed  Google Scholar 

  74. Rapp, S., Brenes, G., & Marsh, A. P. (2002). Memory enhancement training for older adults with mild cognitive impairment: a preliminary study. Aging & Mental Health, 6, (1), 5–11. https://doi.org/10.1080/13607860120101077.

    Article  Google Scholar 

  75. Reggente, N., Essoe, J. K.-Y., Aghajan, Z. M., Tavakoli, A. V., McGuire, J. F., Suthana, N. A., et al. (2018). Enhancing the ecological validity of fMRI memory research using virtual reality. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00408.

  76. Richardson, J. T. (1995). The efficacy of imagery mnemonics in memory remediation. Neuropsychologia, 33, 1345–1357.

    PubMed  Article  Google Scholar 

  77. Rissman, J., & Wagner, A. D. (2012). Distributed representations in memory: insights from functional brain imaging. Annual Review of Psychology, 63, 101–128. https://doi.org/10.1146/annurev-psych-120710-100344.

    Article  PubMed  Google Scholar 

  78. Robin, J. (2018). Spatial scaffold effects in event memory and imagination. Wiley Interdisciplinary Reviews: Cognitive Science, 9, e1462. https://doi.org/10.1002/wcs.1462.

    Article  PubMed  Google Scholar 

  79. Robin, J., Wynn, J., & Moscovitch, M. (2016). The spatial scaffold: the effects of spatial context on memory for events. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42, 308.

    PubMed  Article  PubMed Central  Google Scholar 

  80. Robin, J., Buchsbaum, B. R., & Moscovitch, M. (2018). The primacy of spatial context in the neural representation of events. Journal of Neuroscience: The Official Journal of the Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.1638-17.2018.

    PubMed  PubMed Central  Article  Google Scholar 

  81. Roediger, H. L. (1980). The effectiveness of four mnemonics in ordering recall. Journal of Experimental Psychology [Human Learning], 6, 558–567. https://doi.org/10.1037/0278-7393.6.5.558.

    Article  Google Scholar 

  82. Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self-reference and the encoding of personal information. Journal of Personality and Social Psychology, 35, 677.

    PubMed  Article  Google Scholar 

  83. Ross, J., & Lawrence, K. A. (1968). Some observations on memory artifice. Psychonomic Science, 13, 107–108. https://doi.org/10.3758/BF03342433.

    Article  Google Scholar 

  84. Rummel, J., & Meiser, T. (2013). The role of metacognition in prospective memory: anticipated task demands influence attention allocation strategies. Consciousness and Cognition, 22, 931–943. https://doi.org/10.1016/j.concog.2013.06.006.

    Article  PubMed  Google Scholar 

  85. Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Brain Research. Cognitive Brain Research, 6, 351–360.

    PubMed  Article  Google Scholar 

  86. Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.

    PubMed  PubMed Central  Article  Google Scholar 

  87. Shimamura, A. P. (1984). A guide for teaching mnemonic skills. Teaching of Psychology, 11, 162–166.

    Article  Google Scholar 

  88. Slater, M., Usoh, M., & Steed, A. (1994). Depth of presence in virtual environments. Presence Teleoperators and Virtual Environments, 3, 130–144. https://doi.org/10.1162/pres.1994.3.2.130.

    Article  Google Scholar 

  89. Slater, M., Usoh, M., & Chrysanthou, Y. (1995a). The influence of dynamic shadows on presence in immersive virtual environments. In Virtual environments’ 95 (pp. 8–21). Berlin: Springer.

    Google Scholar 

  90. Slater, M., Usoh, M., & Steed, A. (1995b). Taking steps: the influence of a walking technique on presence in virtual reality. ACM Transactions on Computer-Human Interaction TOCHI, 2, 201–219.

    Article  Google Scholar 

  91. Slater, M., McCarthy, J., & Maringelli, F. (1998). The influence of body movement on subjective presence in virtual environments. Human Factors, 40, 469–477.

    PubMed  Article  Google Scholar 

  92. Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.

    PubMed  Article  Google Scholar 

  93. Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93, 13515–13522.

    PubMed  PubMed Central  Article  Google Scholar 

  94. Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245–251. https://doi.org/10.1037/0033-2909.87.2.245.

    Article  Google Scholar 

  95. Stricker, J. L., Brown, G. G., Wixted, J., Baldo, J. V., & Delis, D. C. (2002). New semantic and serial clustering indices for the California Verbal Learning Test-Second Edition: background, rationale, and formulae. Journal of the International Neuropsychological Society JINS, 8, 425–435.

    PubMed  Article  Google Scholar 

  96. Susser, J. A., & McCabe, J. (2013). From the lab to the dorm room: metacognitive awareness and use of spaced study. Instructional Science, 41, 345–363.

    Article  Google Scholar 

  97. Sutcliffe, J. S., Marshall, K. M., & Neill, J. C. (2007). Influence of gender on working and spatial memory in the novel object recognition task in the rat. Behavioural Brain Research, 177, 117–125.

    PubMed  Article  Google Scholar 

  98. Tate, R. L. (1997). Subject review: beyond one-bun, two-shoe: recent advances in the psychological rehabilitation of memory disorders after acquired brain injury. Brain Injury, 11, 907–918.

    PubMed  Article  Google Scholar 

  99. The Mathworks, Inc. (2012). MATLAB and Statistics Toolbox. Natick, Massachussetts, United States.

  100. Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review of Psychology, 53, 1–25.

    PubMed  Article  Google Scholar 

  101. Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8, 198–204. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-G.

    Article  PubMed  Google Scholar 

  102. Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376–380.

    PubMed  Article  Google Scholar 

  103. Verhaeghen, P., Marcoen, A., & Goossens, L. (1992). Improving memory performance in the aged through mnemonic training: a meta-analytic study. Psychology and Aging, 7, 242.

    PubMed  Article  Google Scholar 

  104. Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 14, 115. https://doi.org/10.1038/nn.2693.

    Article  PubMed  Google Scholar 

  105. Werner-Seidler, A., & Dalgleish, T. (2016). The method of loci improves longer-term retention of self-affirming memories and facilitates access to mood-repairing memories in recurrent depression. Clinical Psychological Science: A Journal of the Association for Psychological Science, 4, 1065–1072. https://doi.org/10.1177/2167702615626693.

    Article  Google Scholar 

  106. West, R. L. (1995). Compensatory strategies for age-associated memory impairment. In A. D. Baddeley, B. A. Wilson, & F. N. Watts (Eds.), Handbook of memory disorders (pp. 481–500). Oxford, England: John Wiley & Sons.

  107. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212–1217. https://doi.org/10.1038/81497.

    Article  PubMed  Google Scholar 

  108. Yates, F. A. (1966). The art of memory (6th ed.). Chicago: University of Chicago Press.

    Google Scholar 

  109. Yesavage, J. A. (1983). Imagery pretraining and memory training in the elderly. Gerontology, 29, 271–275.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors of this project extend an enormous gratitude to Forde “JubJub” Davidson for his countless hours of virtual scripting and design, without which this current work would not have been possible. A thanks is also sent to Majed Samad, Ph.D., for his assistance with creating PsychToolbox testing materials and to John Dell’Italia for guidance on statistical analyses.

Funding

This work was supported by a Defense Advanced Research Project Agency (DARPA) Research Grant awarded to J.R. (D13AP00057) and National Science Foundation (NSF) Graduate Research Fellowships awarded to N.R. (DGE-1650604) and J.K-Y.E. (DGE-1144087).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicco Reggente.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reggente, N., Essoe, J.K.Y., Baek, H.Y. et al. The Method of Loci in Virtual Reality: Explicit Binding of Objects to Spatial Contexts Enhances Subsequent Memory Recall. J Cogn Enhanc 4, 12–30 (2020). https://doi.org/10.1007/s41465-019-00141-8

Download citation

Keywords

  • Memory enhancement
  • Method of loci
  • Virtual reality