Skip to main content
Log in

A Comparison of High-Intensity Interval Training (HIIT) Volumes on Cognitive Performance

  • Original Research
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of two different acute bouts of high-intensity interval training (HIIT) on the Stroop Color Word task and Critical Flicker Fusion (CFF) threshold test. Twenty-five recreationally active subjects (12 men, 13 women; age 23 ± 2.79 years; body mass index 25.03 ± 3.15 kg m−2) were recruited for this study. The acute bouts of HIIT included low-volume (LV) and moderate-volume (MV) sessions. They each had a work to rest ratio of 1:1 min, and exercise was performed at 85% maximal heart rate. The LV session included five intervals, and the MV session included ten intervals. Prior to and after exercise, subjects completed the CFF test and Stroop task. Repeated measures ANOVAs were used to determine the effect of time and volume on test performance. CFF results showed a significant main effect for volume condition across pre/post trials (p = .006), with the MV having a higher average CFF threshold (37.73 ± .63 Hz) compared to LV (36.79 ± .68 Hz). Stroop results showed no main effect of volume condition or interaction (both p > .05) but revealed a significant main effect of time for mean reaction time (RT) total, mean RT congruent/incongruent, and mean RT control (all p < .001). There were no main effects of volume condition or time for proportion correct for all variables (p > .05). The results show that low- and moderate-volume HIIT have similar effects on post-exercise measures of executive function. Our results suggest that the volume of HIIT needed to elicit executive function performance gains may be lower than suggested in previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves, C.R., Gualano, B., Takao, P. P., Avakian, P., Fernandes, R.M., Morine, D., & Takito, M.Y. (2012). Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise. J Sport Exerc Psychol, 34(4), 539–549.

  • Alves, H., Voss, M. W., Boot, R. W., Deslandes, A., Cossich, V., Salles, J. I., & Kramer, A. F. (2013). Perceptual-cognitive expertise in elite volleyball players. Frontiers in Psychology, 4(36), 1–9.

    Google Scholar 

  • Alves, C. R., Tessaro, V. R., Teixara, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual & Motor Skills, 118(1), 63–72.

    Article  Google Scholar 

  • Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2009). Acute aerobic exercise and information processing: modulation of executive control in a Random Number Generation task. Acta Psycol, 132(1), 85–95.

    Article  Google Scholar 

  • Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plasticity, 2, 127–152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berntson, G. G., & Cacioppo, J. T. (2004). Heart rate variability: stress and psychiatric conditions. Dynamic electrocardiography, 57–64.

  • Brisswalter, J., Collardeau, M., & Rene, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555–566.

    Article  PubMed  Google Scholar 

  • Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology, 586(1), 151–160.

    Article  PubMed  Google Scholar 

  • Butler, M., Retzlaff, P. D., & Vanderploeg, R. (1991). Neuropsychology test usage. Professional Psychology: Research and Practice, 22(6), 510–512.

    Article  Google Scholar 

  • Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance. Brain Research, 1453, 87–101.

    Article  PubMed  Google Scholar 

  • Chang, Y.-K., Chu, C.-H., Wang, C.-C., Wang, Y.-C., Song, T.-F., Tsai, C.-L., & Etnier, J. L. (2015). Does-response relation between exercise duration and cognition. Medicine & Science in Sports & Exercise, 47(1), 159–165.

    Article  Google Scholar 

  • Cress, M., Porcari, J., & Foster, C. (2015). Health & fitness A to Z. ACSM’s Health & Fitness Journal, 19(6), 3–6.

    Google Scholar 

  • Curan, S., Hindmarch, I., Wattis, J., & Shillingford, C. (1990). Critical flicker fusion in normal elderly subjects; a cross-sectional community study. Current Psychology, 9, 25–34.

    Article  Google Scholar 

  • Davranche, K., & Pichon, A. (2005). Critical Flicker Frequency threshold increment after an exhausting exercise. Journal of Sport and Exercise Psychology, 27(4), 515–520.

    Article  Google Scholar 

  • Fisher, G., Brown, A. W., Bohan Brown, M. M., Alcorn, A., Noles, C., Winwood, L., Resuerhr, H., George, B., Jeansonne, M. M., & Allison, D. B. (2015). High intensity interval- vs moderate intensity-training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS One, 10(10), 1–15.

    Article  Google Scholar 

  • Gallo-Villegas, J., Aristizabal, J. C., Estrada, M., Valbuena, L. H., Narvaez-Sanchez, R., Osorio, J., Aguirre-Acevedo, D. C., & Calderon, J. C. (2018). Efficacy of high-intensity, low-volume interval training compared to continuous aerobic training on insulin resistance, skeletal muscle structure and function in adults with metabolic syndrome: study protocol for a randomized controlled clinical trial. Trials, 19(144), 1–10.

    Google Scholar 

  • Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training. Exercise and Sport Sciences Reviews, 36(2), 58–63.

    Article  PubMed  Google Scholar 

  • Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology, 590(5), 1077–1084.

    Article  PubMed  Google Scholar 

  • Greer, B. K., Sirithienthad, P., Moffatt, R. J., Marcello, R. T., & Panton, L. B. (2015). EPOC comparison between isocaloric bouts of steady state aerobic, intermittent aerobic, and resistance training. Research Quarterly for Sport and Exercise, 82(2), 190–195.

    Article  Google Scholar 

  • Guiney, H., & Machado, L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20, 73–86.

    Article  Google Scholar 

  • Hanson, N. J., Short, L. E., Flood, L. T., Cherup, N. P., & Miller, M. G. (2018). Cortical neural arousal is differentially affected by type of physical exercise performed. Experimental Brain Research, 23(6), 1643–1649.

    Article  Google Scholar 

  • Homack, S., & Riccio, C. A. (2004). A meta-analysis of the sensitivity and specificity of the Stroop Color and Word Test with children. Archives of Clinical Neuropsychology, 19(6), 725–743.

    Article  PubMed  Google Scholar 

  • Kao, S.-C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54, 1335–1345.

    Article  PubMed  Google Scholar 

  • Kao, S.-C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport & Exercise, 38, 90–99.

    Article  Google Scholar 

  • Kujach, S., Byun, K., Hyodo, K., Suwabe, K., Fukuie, T., Laskowski, R., Dan, I., & Soya, H. (2018). A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults. NeuroImage, 169, 117–125.

    Article  PubMed  Google Scholar 

  • Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12–34.

    Article  PubMed  Google Scholar 

  • Lambourne, K., Audiffren, M., & Tomporowski, P. D. (2010). Effects of acute exercise on sensory and executive processing tasks. Medicine and Science in Sports and Exercise, 42(7), 1396–1402.

    Article  PubMed  Google Scholar 

  • Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pushe, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology, 53, 1611–1626.

    Article  Google Scholar 

  • MacInnis, M. J., & Gibala, M. J. (2016). Physiological adaptations to interval training and the role of exercise intensity. Journal of Physiology, 295(5), 2915–2930.

    Google Scholar 

  • Mewborn, C., Renzi, L., Hammond, B., & Miller, S. (2015). Critical Flicker Fusion predicts executive function in younger and older adults. Archives of Clinical Neuropsychology, 30, 605–610.

    Article  PubMed  Google Scholar 

  • McMorris, T, & Hale, B.J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80, 338–351.

  • Parkin, C., Kerr, J. S., & Hindmarch, I. (1997). The effect of practice on choice reaction time and critical flicker fusion threshold. Human Psychopharmacology, 12, 65–70.

    Article  Google Scholar 

  • Prakash, R. S., Voss, M. W., Erickson, K. I., Lewis, J. M., Chaddock, L., Malkowski, E., Alves, H., Kim, J., Szabo, A., White, S. M., Wojcicki, T. R., McAuley, E., & Kramer, A. F. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4(229), 1–12.

    Google Scholar 

  • Samuel, R. D., Zavdy, O., Levav, M., Reuveny, R., Katz, U., & Dubnov-Raz, G. (2017). The effects of maximal intensity exercise on cognitive performance in children. Journal of Human Kinetics, 57, 85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonson, E., & Brozek, J. (1952). Flicker fusion frequency; background and applications. Physiological Reviews, 32(3), 349–378.

    Article  PubMed  Google Scholar 

  • Strauss, E., Sherman, E. M., & Spreen, O. (1991). A compendium of neuropsychological tests: administration, norms, and commentary. Oxford: Oxford University Press.

    Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324.

    Article  PubMed  Google Scholar 

  • Trapp, E. G., Chisholm, D. J., Freund, J., & Boutcher, S. H. (2008). The effect of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity, 32, 684–691.

    Article  PubMed  Google Scholar 

  • Tremblay, A., Simoneau, J. A., & Bouchard, C. (1994). Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism, 43(7), 814–818.

    Article  PubMed  Google Scholar 

  • Tsukamoto, H., Suga, T., Takenaka, S., Daichi, T., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2016). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior, 155, 224–230.

    Article  Google Scholar 

  • Verburgh, L., Konigs, M., Scherder, E., & Ooserlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. British Journal of Sports Medicine, 48, 973–979.

    Article  PubMed  Google Scholar 

  • Vestburg, T., Reinebo, G., Maurex, L., Ingvar, M., & Petrovic, P. (2017). Core executive functions are associated with success in young elite soccer players. PLoS One, 12(2), 1–13.

    Google Scholar 

  • Wohlwend, M., Olsen, A., Haberg, A. K., & Palmer, H. S. (2017). Exercise intensity-dependent effects on cognitive control function during and after acute treadmill running in young healthy adults. Frontiers in Psychology, 8(406), 10.

    Google Scholar 

Download references

Funding

This study was funded by internal money provided by the Department of Human Performance and Health Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Miller.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M.G., Hanson, N., Tennyck, J. et al. A Comparison of High-Intensity Interval Training (HIIT) Volumes on Cognitive Performance. J Cogn Enhanc 3, 168–173 (2019). https://doi.org/10.1007/s41465-018-0107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-018-0107-y

Keywords

Navigation