Parietal, but Not Motor Cortex, HD-atDCS Deteriorates Learning Transfer of a Complex Bimanual Coordination Task

Abstract

The non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS), is thought to alter cortical excitability and induce neuroplastic changes. When anodal tDCS is applied in association with motor practice, it has frequently been shown to modulate motor performance and motor skill learning. However, the majority of evidence comes from research on tDCS effects on unimanual motor tasks. Despite the abundance of activities of daily life that require complex bimanual motor skills, systematic explorations of the effects of tDCS on the modulation of bimanual motor performance and learning remain sparse. Therefore, the objective of this study was to investigate the effects of anodal high-definition tDCS (HD-atDCS) on motor performance, motor skill learning, and transfer of a complex bimanual coordination task. Twenty-seven healthy right-handed volunteers, divided into three groups, participated in this double-blind study on five separate days. Between a pre- and posttest, participants practiced the bimanual task on 3 days (training days) and concurrently received either bilateral HD-atDCS over the primary motor cortex, parietal cortex, or a sham stimulation. On the fourth day, a retention test was performed, and a second took place after additional 5 to 7 days. Neither motor nor parietal HD-atDCS improved the performance or learning of the bimanual coordination task. Unexpectedly, we found a detrimental effect of parietal HD-atDCS on a transfer task, which was most pronounced during consolidation. Therefore, further research is needed to prove the potential of tDCS to modulate bimanual motor skills and elaborate optimized stimulation protocols for application, such as in the recovery of neurological impairments of the upper limbs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195. https://doi.org/10.1016/j.jesp.2017.09.004.

    Article  Google Scholar 

  2. Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A. R., Chen, R., et al. (2017). Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 128(9), 1774–1809. https://doi.org/10.1016/j.clinph.2017.06.001.

    Article  Google Scholar 

  3. Antal, A., Begemeier, S., Nitsche, M. A., & Paulus, W. (2008). Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia, 46(13), 3157–3161. https://doi.org/10.1016/j.neuropsychologia.2008.07.007.

    Article  PubMed  Google Scholar 

  4. Antal, A., Polania, R., Schmidt-Samoa, C., Dechent, P., & Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage, 55(2), 590–596. https://doi.org/10.1016/j.neuroimage.2010.11.085.

    Article  PubMed  Google Scholar 

  5. Bailey, R. R., Klaesner, J. W., & Lang, C. E. (2015). Quantifying real-world upper-limb activity in nondisabled adults and adults with chronic stroke. Neurorehabilitation and Neural Repair, 29(10), 969–978. https://doi.org/10.1177/1545968315583720.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bastani, A., & Jaberzadeh, S. (2012). Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 123(4), 644–657. https://doi.org/10.1016/j.clinph.2011.08.029.

    Article  Google Scholar 

  7. Battaglia-Mayer, A., Archambault, P. S., & Caminiti, R. (2006). The cortical network for eye-hand coordination and its relevance to understanding motor disorders of parietal patients. Neuropsychologia, 44(13), 2607–2620. https://doi.org/10.1016/j.neuropsychologia.2005.11.021.

    Article  PubMed  Google Scholar 

  8. Baudewig, J., Nitsche, M. A., Paulus, W., & Frahm, J. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine, 45(2), 196–201.

    Article  Google Scholar 

  9. Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., et al. (2016). Safety of transcranial direct current stimulation // safety of transcranial direct current stimulation: evidence based update 2016: evidence based update 2016. Brain Stimulation, 9(5), 641–661. https://doi.org/10.1016/j.brs.2016.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bolognini, N., Fregni, F., Casati, C., Olgiati, E., & Vallar, G. (2010a). Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Research, 1349, 76–89. https://doi.org/10.1016/j.brainres.2010.06.053.

    Article  PubMed  Google Scholar 

  11. Bolognini, N., Olgiati, E., Rossetti, A., & Maravita, A. (2010b). Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. European Journal of Neuroscience, 31(10), 1800–1806. https://doi.org/10.1111/j.1460-9568.2010.07211.x.

    Article  PubMed  Google Scholar 

  12. Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of Neuroengineering and Rehabilitation, 6, 8. https://doi.org/10.1186/1743-0003-6-8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bradnam, L. V., Stinear, C. M., Lewis, G. N., & Byblow, W. D. (2010). Task-dependent modulation of inputs to proximal upper limb following transcranial direct current stimulation of primary motor cortex. Journal of Neurophysiology, 103(5), 2382–2389. https://doi.org/10.1152/jn.01046.2009.

    Article  PubMed  Google Scholar 

  14. Brodt, S., Pöhlchen, D., Flanagin, V. L., Glasauer, S., Gais, S., & Schönauer, M. (2016). Rapid and independent memory formation in the parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 13251–13256. https://doi.org/10.1073/pnas.1605719113.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Broeder, S., Nackaerts, E., Heremans, E., Vervoort, G., Meesen, R., Verheyden, G., & Nieuwboer, A. (2015). Transcranial direct current stimulation in Parkinson’s disease: neurophysiological mechanisms and behavioral effects. Neuroscience & Biobehavioral Reviews, 57, 105–117. https://doi.org/10.1016/j.neubiorev.2015.08.010.

    Article  Google Scholar 

  16. Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., et al. (2017). Effects of tDCS on motor learning and memory formation: a consensus and critical position paper: a consensus and critical position paper. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 128(4), 589–603. https://doi.org/10.1016/j.clinph.2017.01.004.

    Article  Google Scholar 

  17. Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44(13), 2594–2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ciechanski, P., & Kirton, A. (2017). Transcranial direct-current stimulation can enhance motor learning in children. Cerebral cortex (New York, N.Y.: 1991), 27(5), 2758–2767. https://doi.org/10.1093/cercor/bhw114.

    Article  Google Scholar 

  19. Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Burlington: Elsevier Science Retrieved from http://gbv.eblib.com/patron/FullRecord.aspx?p=1882849.

    Book  Google Scholar 

  20. Convento, S., Bolognini, N., Fusaro, M., Lollo, F., & Vallar, G. (2014). Neuromodulation of parietal and motor activity affects motor planning and execution. Cortex: A journal devoted to the study of the nervous system and behavior, 57, 51–59. https://doi.org/10.1016/j.cortex.2014.03.006.

    Article  Google Scholar 

  21. Culham, J. C., Cavina-Pratesi, C., & Singhal, A. (2006). The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia, 44(13), 2668–2684. https://doi.org/10.1016/j.neuropsychologia.2005.11.003.

    Article  PubMed  Google Scholar 

  22. Cumming, G. (2012). Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. Multivariate applications series. Hoboken: Taylor & Francis Retrieved from http://gbv.eblib.com/patron/FullRecord.aspx?p=957018.

    Google Scholar 

  23. Debaere, F., Wenderoth, N., Sunaert, S., van Hecke, P., & Swinnen, S. P. (2004). Changes in brain activation during the acquisition of a new bimanual coodination task. Neuropsychologia, 42(7), 855–867. https://doi.org/10.1016/j.neuropsychologia.2003.12.010.

    Article  PubMed  Google Scholar 

  24. Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781. https://doi.org/10.3389/fpsyg.2014.00781.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Doppelmayr, M., Pixa, N. H., & Steinberg, F. (2016). Cerebellar, but not motor or parietal, high-density anodal transcranial direct current stimulation facilitates motor adaptation. Journal of the International Neuropsychological Society: JINS, 22(9), 928–936. https://doi.org/10.1017/S1355617716000345.

  26. Filimon, F. (2010). Human cortical control of hand movements: parietofrontal networks for reaching, grasping and pointing. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 16(4), 388–407. https://doi.org/10.1177/1073858410375468.

    Article  Google Scholar 

  27. Flöel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 85, 934–947. https://doi.org/10.1016/j.neuroimage.2013.05.098.

    Article  Google Scholar 

  28. Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology. General, 141(1), 2–18. https://doi.org/10.1037/a0024338.

    Article  PubMed  Google Scholar 

  29. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 117(4), 845–850. https://doi.org/10.1016/j.clinph.2005.12.003.

    Article  Google Scholar 

  30. Gomes-Osman, J., & Field-Fote, E. C. (2013). Bihemispheric anodal corticomotor stimulation using transcranial direct current stimulation improves bimanual typing task performance. Journal of Motor Behavior, 45(4), 361–367. https://doi.org/10.1080/00222895.2013.808604.

    Article  PubMed  Google Scholar 

  31. Gottlieb, J. (2007). From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron, 53(1), 9–16. https://doi.org/10.1016/j.neuron.2006.12.009.

    Article  Google Scholar 

  32. Gross, J., Pollok, B., Dirks, M., Timmermann, L., Butz, M., & Schnitzler, A. (2005). Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage, 26(1), 91–98. https://doi.org/10.1016/j.neuroimage.2005.01.025.

    Article  PubMed  Google Scholar 

  33. Halsband, U., & Lange, R. K. (2006). Motor learning in man: a review of functional and clinical studies. Journal of Physiology, Paris, 99(4–6), 414–424. https://doi.org/10.1016/j.jphysparis.2006.03.007.

    Article  PubMed  Google Scholar 

  34. Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage, 67, 283–297. https://doi.org/10.1016/j.neuroimage.2012.11.020.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang, Y.-Z., Rothwell, J. C., Edwards, M. J., & Chen, R.-S. (2008). Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cerebral cortex (New York, N.Y.: 1991), 18(3), 563–570. https://doi.org/10.1093/cercor/bhm087.

    Article  Google Scholar 

  36. Jamil, A., & Nitsche, M. A. (2017). What effect does tDCS have on the brain? Basic physiology of tDCS. Current Behavioral Neuroscience Reports, 4(4), 331–340. https://doi.org/10.1007/s40473-017-0134-5.

    Article  Google Scholar 

  37. JASP Team. (2018). JASP (Version 0.8.6) [computer software].

  38. Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.

    Google Scholar 

  39. Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage, 34(4), 1600–1611. https://doi.org/10.1016/j.neuroimage.2006.09.024.

    Article  PubMed  Google Scholar 

  40. Kang, N., Summers, J. J., & Cauraugh, J. H. (2016). Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 87(4), 345–355. https://doi.org/10.1136/jnnp-2015-311242.

    Article  PubMed  Google Scholar 

  41. Kantak, S., Jax, S., & Wittenberg, G. (2017). Bimanual coordination: a missing piece of arm rehabilitation after stroke. Restorative Neurology and Neuroscience, 35(4), 347–364. https://doi.org/10.3233/RNN-170737.

    Article  PubMed  Google Scholar 

  42. Kantak, S. S., & Winstein, C. J. (2012). Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behavioural Brain Research, 228(1), 219–231. https://doi.org/10.1016/j.bbr.2011.11.028.

    Article  PubMed  Google Scholar 

  43. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158. https://doi.org/10.1038/377155a0.

    Article  PubMed  Google Scholar 

  44. Kidgell, D. J., Goodwill, A. M., Frazer, A. K., & Daly, R. M. (2013). Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neuroscience, 14, 64. https://doi.org/10.1186/1471-2202-14-64.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Krehbiel, L. M., Kang, N., & Cauraugh, J. H. (2017). Age-related differences in bimanual movements: a systematic review and meta-analysis. Experimental Gerontology, 98, 199–206. https://doi.org/10.1016/j.exger.2017.09.001.

    Article  PubMed  Google Scholar 

  46. Kwon, J. W., Nam, S. H., Lee, N. K., Son, S. M., Choi, Y. W., & Kim, C. S. (2013). The effect of transcranial direct current stimulation on the motor suppression in stop-signal task. NeuroRehabilitation, 32(1), 191–196. https://doi.org/10.3233/NRE-130836.

    Article  PubMed  Google Scholar 

  47. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9(180), 898. https://doi.org/10.3389/fncel.2015.00181.

    Article  Google Scholar 

  49. Maes, C., Gooijers, J., Orban de Xivry, J.-J., Swinnen, S. P., & Boisgontier, M. P. (2017). Two hands, one brain, and aging. Neuroscience and Biobehavioral Reviews, 75, 234–256. https://doi.org/10.1016/j.neubiorev.2017.01.052.

    Article  PubMed  Google Scholar 

  50. Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325. https://doi.org/10.1002/ana.410100402.

    Article  PubMed  Google Scholar 

  51. Miranda, P. C., Mekonnen, A., Salvador, R., & Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. NeuroImage, 70, 48–58. https://doi.org/10.1016/j.neuroimage.2012.12.034.

    Article  PubMed  Google Scholar 

  52. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901. https://doi.org/10.1212/WNL.57.10.1899.

    Article  Google Scholar 

  53. Obhi, S. S. (2004). Bimanual coordination: an unbalanced field of research. Motor Control, 8(2), 111–120. https://doi.org/10.1123/mcj.8.2.111.

    Article  PubMed  Google Scholar 

  54. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4.

    Article  Google Scholar 

  55. Orban de Xivry, J.-J., Marko, M. K., Pekny, S. E., Pastor, D., Izawa, J., Celnik, P., & Shadmehr, R. (2011). Stimulation of the human motor cortex alters generalization patterns of motor learning. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(19), 7102–7110. https://doi.org/10.1523/JNEUROSCI.0273-11.2011.

    Article  Google Scholar 

  56. Pixa, N. H., & Pollok, B. (2018). Effects of tDCS on bimanual motor skills: a brief review. Frontiers in Behavioral Neuroscience, 12, 63. https://doi.org/10.3389/fnbeh.2018.00063.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pixa, N. H., Steinberg, F., & Doppelmayr, M. (2017a). Effects of high-definition anodal transcranial direct current stimulation applied simultaneously to both primary motor cortices on bimanual sensorimotor performance. Frontiers in Behavioral Neuroscience, 11, 4506. https://doi.org/10.3389/fnbeh.2017.00130.

    Article  Google Scholar 

  58. Pixa, N. H., Steinberg, F., & Doppelmayr, M. (2017b). High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neuroscience Letters, 643, 84–88. https://doi.org/10.1016/j.neulet.2017.02.033.

    Article  PubMed  Google Scholar 

  59. Pollok, B., Müller, K., Aschersleben, G., Schnitzler, A., & Prinz, W. (2004). Bimanual coordination: neuromagnetic and behavioral data. NeuroReport, 15(3), 449–452.

    Article  Google Scholar 

  60. Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 208–214. https://doi.org/10.1016/j.brainresbull.2007.01.004.

    Article  PubMed  Google Scholar 

  61. Priori, A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114(4), 589–595. https://doi.org/10.1016/S1388-2457(02)00437-6.

    Article  PubMed  Google Scholar 

  62. Puttemans, V., Wenderoth, N., & Swinnen, S. P. (2005). Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(17), 4270–4278. https://doi.org/10.1523/JNEUROSCI.3866-04.2005.

    Article  Google Scholar 

  63. Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590–596. https://doi.org/10.1097/WCO.0b013e32834c3db0.

    Article  PubMed  Google Scholar 

  64. Rémy, F., Wenderoth, N., Lipkens, K., & Swinnen, S. P. (2008). Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: An fMRI study. Cortex: A journal devoted to the study of the nervous system and behavior, 44(5), 482–493. https://doi.org/10.1016/j.cortex.2007.07.004.

    Article  Google Scholar 

  65. Rice, N. J., Tunik, E., & Grafton, S. T. (2006). The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(31), 8176–8182. https://doi.org/10.1523/JNEUROSCI.1641-06.2006.

    Article  Google Scholar 

  66. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. https://doi.org/10.1016/j.jmp.2012.08.001.

    Article  Google Scholar 

  67. Roy, L. B., Sparing, R., Fink, G. R., & Hesse, M. D. (2015). Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia 74, 96–107. https://doi.org/10.1016/j.neuropsychologia.2015.02.028.

  68. Saucedo Marquez, C. M., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7, 333. https://doi.org/10.3389/fnhum.2013.00333.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: a behavioral emphasis (5th ed.). Champaign: Human Kinetics.

    Google Scholar 

  70. Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800–804. https://doi.org/10.1016/j.neuropsychologia.2011.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stagg, C. J., Bachtiar, V., Amadi, U., Gudberg, C. A., Ilie, A. S., Sampaio-Baptista, C., et al. (2014). Local GABA concentration is related to network-level resting functional connectivity. eLife, 3, e01465. https://doi.org/10.7554/eLife.01465.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Summers, J. J., Kang, N., & Cauraugh, J. H. (2016). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Research Reviews, 25, 42–54. https://doi.org/10.1016/j.arr.2015.11.004.

    Article  PubMed  Google Scholar 

  73. Swinnen, S. P., & Gooijers, J. (2015). Bimanual coordination. In A. W. Toga (Ed.), Brain mapping: an encyclopedic reference (pp. 475–482). Burlington: Elsevier Science. https://doi.org/10.1016/B978-0-12-397025-1.00030-0.

    Google Scholar 

  74. Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nature Reviews. Neuroscience, 3(5), 348–359. https://doi.org/10.1038/nrn807.

    Article  PubMed  Google Scholar 

  75. Todd, G., Rogasch, N. C., Flavel, S. C., & Ridding, M. C. (2009). Voluntary movement and repetitive transcranial magnetic stimulation over human motor cortex. Journal of Applied Physiology (Bethesda, Md. : 1985), 106(5), 1593–1603. https://doi.org/10.1152/japplphysiol.91364.2008.

    Article  Google Scholar 

  76. Tunik, E., Rice, N. J., Hamilton, A., & Grafton, S. T. (2007). Beyond grasping: representation of action in human anterior intraparietal sulcus. NeuroImage, 36(Suppl 2), T77–T86. https://doi.org/10.1016/j.neuroimage.2007.03.026.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tunik, E., Frey, S. H., & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8(4), 505–511. https://doi.org/10.1038/nn1430.

    Article  PubMed  Google Scholar 

  78. Turi, Z., Paulus, W., & Antal, A. (2012). Functional neuroimaging and transcranial electrical stimulation. Clinical EEG and Neuroscience, 43(3), 200–208. https://doi.org/10.1177/1550059412444978.

    Article  PubMed  Google Scholar 

  79. Vancleef, K., Meesen, R., Swinnen, S. P., & Fujiyama, H. (2016). tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task. Scientific Reports, 6, 35739. https://doi.org/10.1038/srep35739.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., et al. (2018a). Bayesian inference for psychology. Part II: example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76. https://doi.org/10.3758/s13423-017-1323-7.

    Article  Google Scholar 

  81. Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., et al. (2018b). Bayesian inference for psychology. Part I: theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 35–57. https://doi.org/10.3758/s13423-017-1343-3.

    Article  Google Scholar 

  82. Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). Spatial interference during bimanual coordination: differential brain networks associated with control of movement amplitude and direction. Human Brain Mapping, 26(4), 286–300. https://doi.org/10.1002/hbm.20151.

    Article  PubMed  Google Scholar 

  83. Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475. https://doi.org/10.1016/j.brs.2014.02.003.

    Article  PubMed  Google Scholar 

  84. Wu, J., Srinivasan, R., Kaur, A., & Cramer, S. C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage, 91, 84–90. https://doi.org/10.1016/j.neuroimage.2014.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Spahn and F. Schneewind for support during data acquisition and J. Nassauer and F. Thomas for graphical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nils Henrik Pixa.

Ethics declarations

Conflict of Interest

The author states that there is no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pixa, N.H., Berger, A., Steinberg, F. et al. Parietal, but Not Motor Cortex, HD-atDCS Deteriorates Learning Transfer of a Complex Bimanual Coordination Task. J Cogn Enhanc 3, 111–123 (2019). https://doi.org/10.1007/s41465-018-0088-x

Download citation

Keywords

  • Brain stimulation
  • High-definition transcranial direct current stimulation
  • Bimanual action
  • Motor learning
  • Motor cortex
  • Parietal cortex