Skip to main content

Cognitive Training for Military Application: a Review of the Literature and Practical Guide

Abstract

In recent years, the potential to improve cognitive skills through training has captured the attention of academic researchers, the commercial market, and the general public. Numerous clinical and healthy populations have been identified as targets for cognitive training, and military personnel are one particular group that may be able to uniquely benefit from cognitive training interventions. Military operations involve a wide range of human performance skills, many of which are cognitive in nature. Use of cognitive training to improve these critical everyday skills for service members represents an untapped potential resource by which to improve operational readiness and warfighter performance. While much of the cognitive training research to date has been circumscribed within basic science pursuits, here we propose ways in which this research may start to be applied in a military setting. In the current review, we examine instances of military operations that may readily lend themselves to cognitive training. Further, we examine the existing literature from academic endeavors and pinpoint areas of exemplary efforts that can serve as a guide for military research to follow, as well as pitfalls to avoid. In particular, we identify and review evidence from the video game, working memory, and executive function training literatures. Finally, the goals of basic and applied science often differ, and that is certainly the case when comparing outcome-based research in a military context with mechanism-based research in an academic context. Therefore, we provide a guide for best practices when conducting cognitive training research specifically in a military setting. While cognitive training has attracted much controversy in both academia and commercial markets, we argue that utilizing near transfer effects in a targeted, outcome-based approach may represent a powerful tool to improve human performance in a number of military-relevant scenarios.

This is a preview of subscription content, access via your institution.

References

  1. Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: the same or different constructs? Psychological Bulletin, 131(1), 30–60. https://doi.org/10.1037/0033-2909.131.1.30.

    Article  PubMed  Google Scholar 

  2. Agay, N., Yechiam, E., Carmel, Z., & Levkovitz, Y. (2010). Non-specific effects of methylphenidate (Ritalin) on cognitive ability and decision-making of ADHD and healthy adults. Psychopharmacology, 210(4), 511–519. https://doi.org/10.1007/s00213-010-1853-4.

    Article  PubMed  Google Scholar 

  3. Alderton, D. L., Wolfe, J. H., & Larson, G. E. (1997). The ECAT battery. Military Psychology, 9, 5–37. https://doi.org/10.1207/s15327876mp0901_1.

    Article  Google Scholar 

  4. Allom, V., & Mullan, B. (2015). Two inhibitory control training interventions designed to improve eating behaviour and determine mechanisms of change. Appetite, 89, 282–290. https://doi.org/10.1016/j.appet.2015.02.022.

    Article  PubMed  Google Scholar 

  5. Arciniegas, D. B., Held, K., & Wagner, P. (2002). Cognitive impairment following traumatic brain injury. Current Treatment Options in Neurology, 4(1), 43–57.

    Article  Google Scholar 

  6. Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin & Review, 22(2), 366–377. https://doi.org/10.3758/s13423-014-0699-x.

    Article  Google Scholar 

  7. Barman, A., Chatterjee, A., & Bhide, R. (2016). Cognitive impairment and rehabilitation strategies after traumatic brain injury. Indian Journal of Psychological Medicine, 38(3), 172–181. https://doi.org/10.4103/0253-7176.183086.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.

    Article  Google Scholar 

  9. Battleday, R. M., & Brem, A. K. (2015). Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: a systematic review. European Neuropsychopharmacology, 25(11), 1865–1881. https://doi.org/10.1016/j.euroneuro.2015.07.028.

    Article  PubMed  Google Scholar 

  10. Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: learning to learn and action video games. Annual Review of Neuroscience, 35, 391–416. https://doi.org/10.1146/annurev-neuro-060909-152832.

    Article  PubMed  Google Scholar 

  11. Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., Lu, Z. L., & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16961–16966. https://doi.org/10.1073/pnas.1417056111.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berryhill, M. E., & Jones, K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 521(2), 148–151. https://doi.org/10.1016/j.neulet.2012.05.074.

    Article  PubMed  Google Scholar 

  13. Berryhill, M. E., Peterson, D. J., Jones, K. T., & Stephens, J. A. (2014). Hits and misses: leveraging tDCS to advance cognitive research. Frontiers in Psychology, 5, 800. https://doi.org/10.3389/fpsyg.2014.00800.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Biggs, A. T., Cain, M. S., & Mitroff, S. R. (2015). Cognitive training can reduce civilian casualties in a simulated shooting environment. Psychological Science, 26(8), 1164–1176. https://doi.org/10.1177/0956797615579274.

    Article  PubMed  Google Scholar 

  15. Blacker, K. J., Curby, K. M., Klobusicky, E., & Chein, J. M. (2014). The effects of action video game training on visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1992–2004. https://doi.org/10.1037/a0037556.

    Article  PubMed  Google Scholar 

  16. Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434–454. https://doi.org/10.1007/s41465-017-0044-1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bogdanova, Y., & Verfaellie, M. (2012). Cognitive sequelae of blast-induced traumatic brain injury: recovery and rehabilitation. Neuropsychological Review, 22(1), 4–20. https://doi.org/10.1007/s11065-012-9192-3.

    Article  Google Scholar 

  18. Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445–454. https://doi.org/10.1177/1745691613491271.

    Article  PubMed  Google Scholar 

  19. Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76–106). Oxford, England: Oxford University Press.

    Google Scholar 

  20. Brawley, A. M., & Pury, C. S. (2016). It's like doing a job analysis: You know more about qualitative methods than you may think. Industrial & Organizational Psychology, 9(4), 753–760.

  21. Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A., & Jonides, J. (2014). Neural effects of short-term training on working memory. Cognitive Affective & Behavioral Neuroscience, 14(1), 147–160. https://doi.org/10.3758/s13415-013-0244-9.

    Article  Google Scholar 

  22. Cantor, J., & Engle, R. W. (1993). Working-memory capacity as long-term memory activation: an individual-differences approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(5), 1101–1114. https://doi.org/10.1037/0278-7393.19.5.1101.

    Article  PubMed  Google Scholar 

  23. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind's workspace: training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. https://doi.org/10.3758/PBR.17.2.193.

    Article  Google Scholar 

  24. Chen, Z., Veling, H., Dijksterhuis, A., & Holland, R. W. (2016). How does not responding to appetitive stimuli cause devaluation: evaluative conditioning or response inhibition? Journal of Experimental Psychology: General, 145(12), 1687–1701. https://doi.org/10.1037/xge0000236.

    Article  Google Scholar 

  25. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464. https://doi.org/10.1016/j.cpr.2010.11.003.

    Article  PubMed  Google Scholar 

  26. Chisholm, J. D., & Kingstone, A. (2012). Improved top-down control reduces oculomotor capture: the case of action video game players. Attention, Perception, & Psychophysics, 74(2), 257–262. https://doi.org/10.3758/S13414-011-0253-0.

    Article  Google Scholar 

  27. Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingstone, A. (2010). Reduced attentional capture in action video game players. Attention, Perception, & Psychophysics, 72(3), 667–671. https://doi.org/10.3758/APP.72.3.667.

    Article  Google Scholar 

  28. Chu, D. (2007). Qualification standards for enlistment, appointment, and induction. Retrieved from Washington, DC:

  29. Ciuffreda, K. J., Levi, D. M., & Selenow, A. (1991). Amblyopia: Basic and clinical aspects: Butterworth-Heinemann.

  30. Cogan, A., Madey, J., Kaufman, W., Holmlund, G., & Bach-y-Rita, P. (1977). Pong game as a rehabilitation device. Paper presented at the conference on systems and devices for the disabled, Seattle: University of Washington School of Medicine.

  31. Colom, R., Roman, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M.,. .. Jaeggi, S. M. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41(5), 712–727. doi: https://doi.org/10.1016/J.Intell.2013.09.002.

    Article  Google Scholar 

  32. Colzato, L. S., van Leeuwen, P. J. A., van den Wildenberg, W. P. M., & Hommel, B. (2010). DOOM'd to switch: superior cognitive flexibility in players of first person shooter games. Frontiers in Psychology, 1, 1–5. https://doi.org/10.3389/fpsyg.2010.00008.

    Article  Google Scholar 

  33. Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Science, 7(12), 547–552.

    Article  Google Scholar 

  34. Council, N. R. (2015). Measuring human capabilities: an agenda for basic research on the assessment of individual and group performance potential for military accession. Washington, DC: The National Academic Press.

    Google Scholar 

  35. Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches. Thousand oaks, C.A.: Sage.

    Google Scholar 

  36. Dale, G., & Green, C. S. (2017). The changing face of video games and video gamers: future directions in the scientific study of video game play and cognitive performance. Journal of Cognitive Enhancement, 1–15. https://doi.org/10.1007/s41465-017-0015-6.

  37. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  38. Deveau, J., Jaeggi, S. M., Zordan, V., Phung, C., & Seitz, A. R. (2015). How to build better memory training games. Frontiers in Systems Neuroscience, 8, 243.

    Article  Google Scholar 

  39. DoD Worldwide Numbers for TBI. (2018). Retrieved from http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi

  40. Dreary, I. (2008). Why do intelligent people live longer? Nature, 456(7219), 175–176.

    Article  Google Scholar 

  41. Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18, 321–326. https://doi.org/10.1111/j.1467-8721.2009.01660.x.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. https://doi.org/10.1037//0096-3445.128.3.309.

    Article  Google Scholar 

  43. Enriquez-Geppert, S., Huster, R. J., Figge, C., & Herrmann, C. S. (2014). Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting. Frontiers in Behavioral Neuroscience, 8, 420. https://doi.org/10.3389/fnbeh.2014.00420.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fay, T. B., Yeates, K. O., Taylor, H. G., Bangert, B., Dietrich, A., Nuss, K. E.,. .. Wright, M. (2010). Cognitive reserve as a moderator of postconcussive symptoms in children with complicated and uncomplicated mild traumatic brain injury. Journal of the International Neuropsychological Society, 16(1), 94–105. doi:https://doi.org/10.1017/S1355617709991007.

    Article  PubMed  Google Scholar 

  45. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855. https://doi.org/10.1111/j.1467-9280.2007.01990.x.

    Article  PubMed  Google Scholar 

  46. Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., & Greenwood, P. M. (2016). Placebo effects in cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7470–7474. https://doi.org/10.1073/pnas.1601243113.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Foster, J. L., Harrison, T. L., Hicks, K. L., Draheim, C., Redick, T. S., & Engle, R. W. (2017). Do the effects of working memory training depend on baseline ability level? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(11), 1677–1689. https://doi.org/10.1037/xlm0000426.

    Article  PubMed  Google Scholar 

  48. Gilleen, J., Michalopoulou, P. G., Reichenberg, A., Drake, R., Wykes, T., Lewis, S. W., & Kapur, S. (2014). Modafinil combined with cognitive training is associated with improved learning in healthy volunteers—a randomised controlled trial. European Neuropsychopharmacology, 24(4), 529–539. https://doi.org/10.1016/j.euroneuro.2014.01.001.

    Article  PubMed  Google Scholar 

  49. Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia. Journal of Neuropsychiatry & Clinical Neuroscience, 6(4), 348–357. https://doi.org/10.1176/jnp.6.4.348.

    Article  Google Scholar 

  50. Gozli, D. G., Bavelier, D., & Pratt, J. (2014). The effect of action video game playing on sensorimotor learning: evidence from a movement tracking task. Human Movement Science, 38C, 152–162. https://doi.org/10.1016/j.humov.2014.09.004.

    Article  Google Scholar 

  51. Grafman, J., Jonas, B., & Salazar, A. (1990). Wisconsin card sorting test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury. Perceptual and Motor Skills, 71(3 Pt 2), 1120–1122. https://doi.org/10.2466/pms.1990.71.3f.1120.

    Article  PubMed  Google Scholar 

  52. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence, and aggression: a report of the Vietnam head injury study. Neurology, 46(5), 1231–1238.

    Article  Google Scholar 

  53. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–538. https://doi.org/10.1038/nature01647.

    Article  PubMed  Google Scholar 

  54. Green, C. S., & Bavelier, D. (2006). Effect of action video games on spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1465–1478. https://doi.org/10.1037/0096-1523.32.6.1465.

    Article  PubMed  Google Scholar 

  55. Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94. https://doi.org/10.1111/j.1467-9280.2007.01853.x.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28(3), 984–994. https://doi.org/10.1016/j.chb.2011.12.020.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Green, C. S., Gorman, T., & Bavelier, D. (2016). Action video-game training and its effects on perception and attentional control. In T. Strobach & J. Karbach (Eds.), Cognitive training (pp. 107–116). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  58. Groswasser, Z., Reider, G., II, Schwab, K., Ommaya, A. K., Pridgen, A., Brown, H. R.,. .. Salazar, A. M. (2002). Quantitative imaging in late TBI. Part II: cognition and work after closed and penetrating head injury: a report of the Vietnam head injury study. Brain Injury, 16(8), 681–690. doi:https://doi.org/10.1080/02699050110119835.

    Article  PubMed  Google Scholar 

  59. Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Review, 44, 124–141. https://doi.org/10.1016/j.neubiorev.2013.09.015.

    Article  Google Scholar 

  60. Guerrieri, R., Nederkoorn, C., & Jansen, A. (2012). Disinhibition is easier learned than inhibition. The effects of (dis)inhibition training on food intake. Appetite, 59(1), 96–99. https://doi.org/10.1016/j.appet.2012.04.006.

    Article  PubMed  Google Scholar 

  61. Haaland, K. Y., Sadek, J. R., Keller, J. E., & Castillo, D. T. (2016). Neurocognitive correlates of successful treatment of PTSD in female veterans. Journal of the International Neuropsychological Society, 22(6), 643–651. https://doi.org/10.1017/S1355617716000424.

    Article  PubMed  Google Scholar 

  62. Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10), 1279–1296.

    Article  Google Scholar 

  63. Hamilton, J. A., Lambert, G., Suss, J., & Biggs, A. T. (2018). Can cognitive training imprive shoot/don’t-shoot performance with live ammunition? Preliminary evidence from live fire exercises.

  64. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiolology & Biofeedback, 30(1), 1–10.

    Article  Google Scholar 

  65. Haut, K. M., Lim, K. O., & MacDonald 3rd., A. (2010). Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology, 35(9), 1850–1859. https://doi.org/10.1038/npp.2010.52.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. https://doi.org/10.1038/nrn2298.

    Article  PubMed  Google Scholar 

  67. Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., & Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12-15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(10), 1401–1408.

    PubMed  PubMed Central  Google Scholar 

  68. Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57(5), 253–270.

    Article  Google Scholar 

  69. Houben, K., & Jansen, A. (2011). Training inhibitory control. A recipe for resisting sweet temptations. Appetite, 56(2), 345–349. https://doi.org/10.1016/j.appet.2010.12.017.

    Article  PubMed  Google Scholar 

  70. Houben, K., & Jansen, A. (2015). Chocolate equals stop. Chocolate-specific inhibition training reduces chocolate intake and go associations with chocolate. Appetite, 87, 318–323. https://doi.org/10.1016/j.appet.2015.01.005.

    Article  PubMed  Google Scholar 

  71. Houben, K., Nederkoorn, C., Wiers, R. W., & Jansen, A. (2011). Resisting temptation: Decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug & Alcohol Dependence, 116(1–3), 132–136. https://doi.org/10.1016/j.drugalcdep.2010.12.011.

    Article  Google Scholar 

  72. Houben, K., Havermans, R. C., Nederkoorn, C., & Jansen, A. (2012). Beer a no-go: learning to stop responding to alcohol cues reduces alcohol intake via reduced affective associations rather than increased response inhibition. Addiction, 107(7), 1280–1287. https://doi.org/10.1111/j.1360-0443.2012.03827.x.

    Article  PubMed  Google Scholar 

  73. Huckans, M., Pavawalla, S., Demadura, T., Kolessar, M., Seelye, A., Roost, N.,. .. Storzbach, D. (2010). A pilot study examining effects of group-based Cognitive Strategy Training treatment on self-reported cognitive problems, psychiatric symptoms, functioning, and compensatory strategy use in OIF/OEF combat veterans with persistent mild cognitive disorder and history of traumatic brain injury. Journal of Rehabilitation Research & Development, 47(1), 43–60.

    Article  Google Scholar 

  74. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proc Natl Acad Sci U S A, 105(19), 6829–6833. https://doi.org/10.1073/pnas.0801268105.

  75. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning - implications for training and transfer. Intelligence, 38(6), 625–635. https://doi.org/10.1016/J.Intell.2010.09.001.

    Article  Google Scholar 

  76. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10081–10086. https://doi.org/10.1073/pnas.1103228108.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory & Cognition, 42(3), 464–480. https://doi.org/10.3758/s13421-013-0364-z.

    Article  Google Scholar 

  78. Jha, A. P., Stanley, E. A., Kiyonaga, A., Wong, L., & Gelfand, L. (2010). Examining the protective effects of mindfulness training on working memory capacity and affective experience. Emotion, 10(1), 54–64. https://doi.org/10.1037/a0018438.

    Article  PubMed  Google Scholar 

  79. Jones, A., & Field, M. (2013). The effects of cue-specific inhibition training on alcohol consumption in heavy social drinkers. Experimental Clinical Psychopharmacology, 21(1), 8–16. https://doi.org/10.1037/a0030683.

    Article  PubMed  Google Scholar 

  80. Jongkees, B. J., Hommel, B., Kuhn, S., & Colzato, L. S. (2015). Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—a review. Journal of Psychiatric Research, 70, 50–57. https://doi.org/10.1016/j.jpsychires.2015.08.014.

    Article  PubMed  Google Scholar 

  81. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.

    Article  Google Scholar 

  82. Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990. https://doi.org/10.1111/j.1467-7687.2009.00846.x.

    Article  PubMed  Google Scholar 

  83. Karbach, J., & Unger, K. (2014). Executive control training from middle childhood to adolescence. Frontiers in Psychology, 5, 390. https://doi.org/10.3389/fpsyg.2014.00390.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Karbach, J., & Verhaeghen, P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. https://doi.org/10.1177/0956797614548725.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Karle, J. W., Watter, S., & Shedden, J. M. (2010). Task switching in video game players: Benefits of selective attention but not resistance to proactive interference. Acta Psychologica, 134(1), 70–78. https://doi.org/10.1016/j.actpsy.2009.12.007.

    Article  PubMed  Google Scholar 

  86. Keizer, A. W., Verment, R. S., & Hommel, B. (2010). Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. NeuroImage, 49(4), 3404–3413. https://doi.org/10.1016/j.neuroimage.2009.11.023.

    Article  PubMed  Google Scholar 

  87. Kesler, S. R., Adams, H. F., Blasey, C. M., & Bigler, E. D. (2003). Premorbid intellectual functioning, education, and brain size in traumatic brain injury: an investigation of the cognitive reserve hypothesis. Applied Neuropsychology, 10(3), 153–162. https://doi.org/10.1207/S15324826AN1003_04.

    Article  PubMed  Google Scholar 

  88. Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of theta and upper alpha oscillations. Experimental Psychology, 52(2), 99–108. https://doi.org/10.1027/1618-3169.52.2.99.

    Article  PubMed  Google Scholar 

  89. Konen, T., Strobach, T., & Karbach, J. (2016). Working memory. In T. Strobach & J. Karbach (Eds.), Cognitive training: An overview of features and applications. Switzerland: Springer International Publishing.

    Google Scholar 

  90. van Koningsbruggen, G. M., Veling, H., Stroebe, W., & Aarts, H. (2014). Comparing two psychological interventions in reducing impulsive processes of eating behaviour: effects on self-selected portion size. British Journal of Health Psychology, 19(4), 767–782. https://doi.org/10.1111/bjhp.12075.

    Article  PubMed  Google Scholar 

  91. Kray, J., Karbach, J., Haenig, S., & Freitag, C. (2011). Can task-switching training enhance executive control functioning in children with attention deficit/−hyperactivity disorder? Frontiers in Human Neuroscience, 5, 180. https://doi.org/10.3389/fnhum.2011.00180.

    Article  PubMed  Google Scholar 

  92. Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: can one construct predict them all? Journal of Personality and Social Psychology, 86(1), 148–161. https://doi.org/10.1037/0022-3514.86.1.148.

    Article  PubMed  Google Scholar 

  93. Kuo, M. F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43(3), 192–199. https://doi.org/10.1177/1550059412444975.

    Article  PubMed  Google Scholar 

  94. Larson, G. E., & Saccuzzo, D. P. (1989). Cognitive correlates of general intelligence: toward a process theory of g. Intelligence, 13, 5–31. https://doi.org/10.1016/0160-2896(89)90003-2.

    Article  Google Scholar 

  95. Lawrence, N. S., Verbruggen, F., Morrison, S., Adams, R. C., & Chambers, C. D. (2015). Stopping to food can reduce intake. Effects of stimulus-specificity and individual differences in dietary restraint. Appetite, 85, 91–103. https://doi.org/10.1016/j.appet.2014.11.006.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 114(4), 599–611. https://doi.org/10.1037/0021-843X.114.4.599.

    Article  PubMed  Google Scholar 

  97. Li, S. C., Schmiedek, F., Huxhold, O., Rocke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychological Aging, 23(4), 731–742. https://doi.org/10.1037/a0014343.

    Article  Google Scholar 

  98. Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551. https://doi.org/10.1038/nn.2296.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li, R., Polat, U., Scalzo, F., & Bavelier, D. (2010). Reducing backward masking through action game training. Journal of Vision, 10(14). https://doi.org/10.1167/10.14.33.

  100. Li, C. H., He, X., Wang, Y. J., Hu, Z., & Guo, C. Y. (2017). Visual working memory capacity can be increased by training on distractor filtering efficiency. Frontiers in Psychology, 8, 196. https://doi.org/10.3389/fpsyg.2017.00196.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Light, G. A., & Swerdlow, N. R. (2015). Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Annals of the New York Academy of Sciences, 1344, 105–119. https://doi.org/10.1111/nyas.12730.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Limitation on enlistment and induction of persons whose score on the armed forces qualification test is below a prescribed level, § 520 (2011).

  103. Logan, G. D. (1994). On the ability to inhibit thought and action: a users' guide to the stop signal paradigm.

    Google Scholar 

  104. Lovden, M., Backman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. https://doi.org/10.1037/a0020080.

    Article  PubMed  Google Scholar 

  105. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846.

    Article  PubMed  Google Scholar 

  106. Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends in Cognitive Science, 12(4), 163–169. https://doi.org/10.1016/j.tics.2008.01.005.

    Article  Google Scholar 

  107. Machizawa, M. G., & Driver, J. (2011). Principal component analysis of behavioural individual differences suggests that particular aspects of visual working memory may relate to specific aspects of attention. Neuropsychologia, 49(6), 1518–1526. https://doi.org/10.1016/j.neuropsychologia.2010.11.032.

    Article  PubMed  Google Scholar 

  108. McDermott, T. J., Badura-Brack, A. S., Becker, K. M., Ryan, T. J., Bar-Haim, Y., Pine, D. S.,. .. Wilson, T. W. (2016). Attention training improves aberrant neural dynamics during working memory processing in veterans with PTSD Cognitive Affective & Behavioral Neuroscience, 16(6), 1140–1149. doi:https://doi.org/10.3758/s13415-016-0459-7.

    Article  Google Scholar 

  109. Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Science, 49(2), 270–291. https://doi.org/10.1037/a0028228.

    Article  Google Scholar 

  110. Minear, M., & Shah, P. (2008). Training and transfer effects in task switching. Memory & Cognition, 36(8), 1470–1483. https://doi.org/10.3758/MC.336.8.1470.

    Article  Google Scholar 

  111. Mishra, J., Zinni, M., Bavelier, D., & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. Journal of Neuroscience, 31(3), 992–998. https://doi.org/10.1523/JNEUROSCI.4834-10.2011.

    Article  PubMed  Google Scholar 

  112. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734.

    Article  Google Scholar 

  113. Mogle, J. A., Lovett, B. J., Stawski, R. S., & Sliwinski, M. J. (2008). What's so special about working memory? An examination of the relationships among working memory, secondary memory, and fluid intelligence. Psychological Science, 19(11), 1071–1077. https://doi.org/10.1111/j.1467-9280.2008.02202.x.

    Article  PubMed  Google Scholar 

  114. Mohammed, S., Flores, L., Deveau, J., Hoffing, R. C., Phung, C., Parlett, C. M.,. .. Seitz, A. R. (2017). The benefits and challenges of implementing motivational features to boost cognitive training outcome. Journal of Cognitive Enhancement, 1(4), 491–507.

    Article  Google Scholar 

  115. Monsell, S. (2003). Task switching. Trends in Cognitive Science, 7(3), 134–140.

    Article  Google Scholar 

  116. Moore, W., Pedlow, S., Krishnamurty, P., Wolter, K., & Chicago, I. L. (2000). National longitudinal survey of youth 1997 (NLSY97). Retrieved from Chicago, IL:

  117. Morgeson, F. P., & Dierdorff, E. C. (2011). Work analysis: From technique to theory. In S. Zedeck (Ed.), APA handbook of industrial and organizational psychology (Vol. 2, pp. 3–41). Washington, D.C.: APA.

    Google Scholar 

  118. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18, 46–60. https://doi.org/10.3758/s13423-010-0034.

    Article  PubMed  Google Scholar 

  119. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639.

    Article  Google Scholar 

  120. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.

    Article  Google Scholar 

  121. Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron, 87(5), 932–945. https://doi.org/10.1016/j.neuron.2015.07.032.

    Article  PubMed  Google Scholar 

  122. Patrick, J., & Moore, A. K. (1985). Development and reliability of a job analysis technique. Journal of Occupational Psychology, 58(2), 149–158.

    Article  Google Scholar 

  123. Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychonomic Bulletin & Review, 20(6), 1055–1079. https://doi.org/10.3758/s13423-013-0418-z.

    Article  Google Scholar 

  124. Rasmussen, R. E. (2007). The wrong target: the problem of mistargeting resulting in fratricide and civilian casualties. National Defense University Norfolk VA Joint Advanced Warfighting School.

  125. Raymont, V., Salazar, A. M., Krueger, F., & Grafman, J. (2011). Studying injured minds—the Vietnam head injury study and 40 years of brain injury research. Frontiers in Neurology, 2, 15. https://doi.org/10.3389/fneur.2011.00015.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Redick, T. S. (2016). On the relation of working memory and multitasking: memory span and synthetic work performance. Journal of Applied Research in Memory and Cognition, 5(4), 401–409. https://doi.org/10.1016/j/jarmac.2016.05.003.

    Article  Google Scholar 

  127. Reisberg, D., Baron, J., & Kemler, D. G. (1980). Overcoming Stroop interference: the effects of practice on distractor potency. Journal of Experimental Psychology: Human Perception & Performance, 6(1), 140–150.

    Google Scholar 

  128. Richardson, J. M. (2016). A design for maintaining maritime superiority. Naval War College Review, 69(2), 11–18.

    Google Scholar 

  129. Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychological Aging, 26(4), 813–822. https://doi.org/10.1037/a0023631.

    Article  Google Scholar 

  130. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14931–14936. https://doi.org/10.1073/pnas.0506897102.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Russell, T. L., Ford, L., & Ramsberger, P. (2014). Thoughts on the future of military enlisted selection and classification. Retrieved from Alexandria, VA:

  132. Sager, C. E., Peterson, N. G., Oppler, S. H., Rosse, R. L., & Walker, C. B. (1997). An examination of five indexes of test battery performance: analysis of the ECAT battery. Military Psychology, 9, 97–120. https://doi.org/10.1207/s15327876mp0901_6.

    Article  Google Scholar 

  133. Sandry, J., DeLuca, J., & Chiaravalloti, N. (2015). Working memory capacity links cognitive reserve with long-term memory in moderate to severe TBI: a translational approach. Journal of Neurology, 262(1), 59–64. https://doi.org/10.1007/s00415-014-7523-4.

    Article  PubMed  Google Scholar 

  134. Schmiedek, F., Lovden, M., & Lindenberger, U. (2010). Hundred Days of Cognitive Training Enhance Broad Cognitive Abilities in Adulthood: Findings from the COGITO Study. Front Aging Neurosci, 2. doi:https://doi.org/10.3389/fnagi.2010.00027.

  135. Schneider, E. B., Sur, S., Raymont, V., Duckworth, J., Kowalski, R. G., Efron, D. T.,. .. Stevens, R. D. (2014). Functional recovery after moderate/severe traumatic brain injury: a role for cognitive reserve? Neurology, 82(18), 1636–1642. doi:https://doi.org/10.1212/WNL.0000000000000379.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Schneiders, J. A., Opitz, B., Krick, C. M., & Mecklinger, A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, 21(11), 2555–2564. https://doi.org/10.1093/cercor/bhr037.

    Article  PubMed  Google Scholar 

  137. Schwaighofer, M., Fischer, F., & Buhner, M. (2015). Does working memory training transfer? A meta-analysis including training conditions as moderators. Educational Psychologist, 50(2), 138–166.

    Article  Google Scholar 

  138. Shamosh, N. A., Deyoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R.,. .. Gray, J. R. (2008). Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19(9), 904–911. doi:https://doi.org/10.1111/j.1467-9280.2008.02175.x.

    Article  PubMed  Google Scholar 

  139. Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & al., e. (2011). Neurofeedback and basic learning theory: implications for research and practice. Journal of Neurotherapy, 15, 292–304. doi:https://doi.org/10.1080/10874208.2011.623089.

  140. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is Working Memory Training Effective? Psychological Bulletin, 138(4), 628–654. https://doi.org/10.1037/A0027473.

    Article  PubMed  Google Scholar 

  141. Silver, H., Feldman, P., Bilker, W., & Gur, R. C. (2003). Working memory deficit as a core neuropsychological dysfunction in schizophrenia. American Journal of Psychiatry, 160(10), 1809–1816. https://doi.org/10.1176/appi.ajp.160.10.1809.

    Article  PubMed  Google Scholar 

  142. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do "brain-training" programs work? Psychological Science in the Public Interest, 17(3), 103–186. https://doi.org/10.1177/1529100616661983.

    Article  PubMed  Google Scholar 

  143. Singh, B., Cable, G. G., Hampson, G. V., Pascoe, G. D., Corbett, M., & Smith, A. (2010). Hypoxia awareness training for aircrew: a comparison of two techniques. Aviation, Space, and Environmental Medicine, 81(9), 857–863.

    Article  Google Scholar 

  144. Smith, A. M. (2008). Hypoxia symptoms in military aircrew: long-term recall vs. acute experience in training. Aviation, Space, and Environmental Medicine, 79(1), 54–57.

    Article  Google Scholar 

  145. Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53. https://doi.org/10.1177/1073858410386614.

    Article  PubMed  Google Scholar 

  146. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460. https://doi.org/10.1017/S1355617702813248.

    Article  PubMed  Google Scholar 

  147. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Strobach, T., & Karbach, J. (2016). Cognitive training: An overview of features and applications. Switzerland: Springer International Publishing.

    Book  Google Scholar 

  149. Strobach, T., Frensch, P. A., & Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24. https://doi.org/10.1016/J.Actpsy.2012.02.001.

    Article  PubMed  Google Scholar 

  150. Strobach, T., Salminen, T., Karbach, J., & Schubert, T. (2014). Practice-related optimization and transfer of executive functions: a general review and a specific realization of their mechanisms in dual tasks. Psychological Research, 78(6), 836–851. https://doi.org/10.1007/s00426-014-0563-7.

    Article  PubMed  Google Scholar 

  151. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  152. Tang, Y. Y., Holzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213–225. https://doi.org/10.1038/nrn3916.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Thorell, L. B., Lindqvist, S., Bergman Nutley, S., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106–113. https://doi.org/10.1111/j.1467-7687.2008.00745.x.

    Article  PubMed  Google Scholar 

  154. Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficicency of the other functions. (I). Psychological Review, 8(3).

  155. Tuholski, S. W., Engle, R. W., & Baylis, G. C. (2001). Individual differences in working memory capacity and enumeration. Memory & Cognition, 29(3), 484–492. https://doi.org/10.3758/BF03196399.

    Article  Google Scholar 

  156. Twamley, E. W., Jak, A. J., Delis, D. C., Bondi, M. W., & Lohr, J. B. (2014). Cognitive symptom management and rehabilitation therapy (CogSMART) for veterans with traumatic brain injury: pilot randomized controlled trial. Journal of Rehabilitation Research & Development, 51(1), 59–70. https://doi.org/10.1682/JRRD.2013.01.0020.

    Article  Google Scholar 

  157. Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory delay activity predicts individual differences in cognitive abilities. Journal of Cognitive Neuroscience, 1–13. https://doi.org/10.1162/jocn_a_00765.

  158. Vartanian, O., Coady, L., & Blackler, K. (2016). 3D multiple object tracking boosts working memory span: Implications for cognitive training in military populations. Military Psychology, 28(5), 353–360.

    Article  Google Scholar 

  159. Vedamurthy, I., Nahum, M., Bavelier, D., & Levi, D. M. (2015a). Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game. Scientific Reports, 5, 8482. https://doi.org/10.1038/srep08482.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vedamurthy, I., Nahum, M., Huang, S. J., Zheng, F., Bayliss, J., Bavelier, D., & Levi, D. M. (2015b). A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision Research, 114, 173–187. https://doi.org/10.1016/j.visres.2015.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Veling, H., Aarts, H., & Stroebe, W. (2013). Using stop signals to reduce impulsive choices for palatable unhealthy foods. British Journal of Health Psychology, 18(2), 354–368. https://doi.org/10.1111/j.2044-8287.2012.02092.x.

    Article  PubMed  Google Scholar 

  162. Veling, H., van Koningsbruggen, G. M., Aarts, H., & Stroebe, W. (2014). Targeting impulsive processes of eating behavior via the internet. Effects on body weight. Appetite, 78, 102–109. https://doi.org/10.1016/j.appet.2014.03.014.

    Article  PubMed  Google Scholar 

  163. Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649–672. https://doi.org/10.1037/a0013170.

    Article  Google Scholar 

  164. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(24), 500–503. https://doi.org/10.1038/nature04171.

    Article  PubMed  Google Scholar 

  165. Waller, D. C. (1994). The commandos: the inside story of America's secret soldiers: Simon and Schuster.

  166. Wilson, K. M., Head, J., & Helton, W. S. (2013). Friendly fire in a simulated firearms task. Paper presented at the human factors and ergonomics society, Los Angeles, CA.

  167. Wilson, K. M., Head, J., de Joux, N. R., Finkbeiner, K. M., & Helton, W. S. (2015). Friendly fire and the sustained attention to response task. Human Factors, 57(7), 1219–1234. https://doi.org/10.1177/0018720815605703.

    Article  PubMed  Google Scholar 

  168. Zinke, K., Zeintl, M., Eschen, A., Herzog, C., & Kliegel, M. (2012). Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology, 58(1), 79–87. https://doi.org/10.1159/000324240.

    Article  PubMed  Google Scholar 

  169. Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304–315. https://doi.org/10.1037/a0032982.

    Article  PubMed  Google Scholar 

  170. Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. https://doi.org/10.1016/j.neuroimage.2010.08.078.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

Funding

This work was supported by an Office of Naval Research award H1602 to ATB.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kara J. Blacker.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Copyright Statement

LT Adam T. Biggs is a military service member. This work was prepared as part of his official duties. Title 17 U.S.C. §105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blacker, K.J., Hamilton, J., Roush, G. et al. Cognitive Training for Military Application: a Review of the Literature and Practical Guide. J Cogn Enhanc 3, 30–51 (2019). https://doi.org/10.1007/s41465-018-0076-1

Download citation

Keywords