Journal of Cognitive Enhancement

, Volume 1, Issue 3, pp 327–336 | Cite as

An Integrated Assessment of Changes in Brain Structure and Function of the Insula Resulting from an Intensive Mindfulness-Based Intervention

  • Benjamin W. Mooneyham
  • Michael D. MrazekEmail author
  • Alissa J. Mrazek
  • Kaita L. Mrazek
  • Elliott D. Ihm
  • Jonathan W. Schooler
Original Article


Mindfulness training is thought to alter both brain function and structure, yet these effects are almost always investigated and reported independently. In the present study, we combine these two approaches to provide a more complete description of the effects of a 6-week mindfulness-based health and wellness intervention. Region-of-interest analysis of brain structure revealed a significant increase in cortical thickness within the left-hemisphere posterior insula, a region that plays a role in auditory perception and interoception. We then examined changes in the resting-state functional connectivity (rs-FC) of this insula cluster and found two regions with which it displayed increased functional connectivity: one in the right-hemisphere ventrolateral prefrontal cortex (vlPFC) and another spanning parts of the left-hemisphere middle and superior temporal gyri (MTG/STG). Individuals with the greatest improvements in dispositional mindfulness showed the greatest increases in insular thickness as well as greater increases in rs-FC of the posterior insula with vlPFC and MTG/STG. The insula, vlPFC, and MTG/STG comprise a structurally connected network involved in, respectively, early auditory perception, the allocation of attention to changes in sounds, and the detailed analysis of fluctuations in sounds. Accordingly, these findings suggest a mechanistic account of the alterations in brain structure and function that underlie changes in auditory processing following a mindfulness-based intervention.


Mindfulness Insula Cortical thickness Functional connectivity Ventrolateral prefrontal cortex 


  1. Bamiou, D., Musiek, F. E., & Luxon, L. M. (2003). The insula (Island of Reil) and its role in auditory processing: literature review. Brain Research Reviews, 42, 143–154.CrossRefPubMedGoogle Scholar
  2. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. doi: 10.1016/j.neuroimage.2007.04.042.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y.-Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences, 108(50), 20254–20259. doi: 10.1073/pnas.1112029108.CrossRefGoogle Scholar
  4. Buse, J., & Roessner, V. (2016). Neural correlates of processing harmonic expectancy violations in children and adolescents with OCD. NeuroImage: Clinical, 10, 267–273. doi: 10.1016/j.nicl.2015.12.006.CrossRefGoogle Scholar
  5. Burton, M. W. (2009). Understanding the role of the prefrontal cortex in phonological processing. Clinical Linguistics & Phonetics, 23(3), 180–195. doi: 10.1080/02699200802394963.CrossRefGoogle Scholar
  6. Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84, 822–848.CrossRefPubMedGoogle Scholar
  7. Cardinale, F., Chinnici, G., Bramerio, M., Mai, R., Sartori, I., Cossu, M., et al. (2014). Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics, 12(4), 535–542. doi: 10.1007/s12021-014-9229-2.CrossRefPubMedGoogle Scholar
  8. Chumbley, J., Worsley, K., Flandin, G., & Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage, 49(4), 3057–3064. doi: 10.1016/j.neuroimage.2009.10.090.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Craig, A. D. (2011). Significance of the insula for the evolution of human awareness of feelings from the body: insula and awareness. Annals of the New York Academy of Sciences, 1225(1), 72–82. doi: 10.1111/j.1749-6632.2011.05990.x.CrossRefPubMedGoogle Scholar
  10. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. doi: 10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  11. Farb, N. A., Segal, Z. V., Mayberg, H., Bean, J., McKeon, D., Fatima, Z., & Anderson, A. K. (2007). Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Social Cognitive and Affective Neuroscience, 2(4), 313–322. doi: 10.1093/scan/nsm030.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Farb, N. A. S., Segal, Z. V., & Anderson, A. K. (2012). Mindfulness meditation training alters cortical representations of interoceptive attention. Social Cognitive and Affective Neuroscience, nss066.  10.1093/scan/nss066
  13. Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207. doi: 10.1006/nimg.1998.0396.CrossRefPubMedGoogle Scholar
  14. Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4.CrossRefPubMedGoogle Scholar
  15. Flynn, F. G. (1999). Anatomy of the insula—functional and clinical correlates. Aphasiology, 13(1), 55–78. doi: 10.1080/026870399402325.CrossRefGoogle Scholar
  16. Fox, K. C. R., Dixon, M. L., Jijeboer, S., Girn, M., Floman, J. L., Lifshitz, M., et al. (2016). Functional neuroanatomy of meditation: a review and meta-analysis of 78 functional neuroimaging investigations. Neuroscience and Biobehavioral Reviews, 65, 208–228. doi: 10.1016/j.neubiorev.2016.03.021.CrossRefPubMedGoogle Scholar
  17. Fox, K. C. R., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., et al. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience & Biobehavioral Reviews, 43, 48–73. doi: 10.1016/j.neubiorev.2014.03.016.CrossRefGoogle Scholar
  18. Grant, J. A., Courtemanche, J., Duerden, E. G., Duncan, D. H., & Rainville, P. (2010). Cortical thickness and pain sensitivity in Zen meditators. Emotion, 10(1), 43–53. doi: 10.1037/a0018334.CrossRefPubMedGoogle Scholar
  19. Guerra-Carrillo, B., Mackey, A. P., & Bunge, S. A. (2014). Resting-state fMRI a window into human brain plasticity. The Neuroscientist, 20(5), 522–533.CrossRefPubMedGoogle Scholar
  20. Guldin, W. O., & Markowitsch, H. J. (1984). Cortical and thalamic afferent connections of the insular and adjacent cortex of the cat. The Journal of Comparative Neurology, 229(3), 393–418. doi: 10.1002/cne.902290309.CrossRefPubMedGoogle Scholar
  21. Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D., Freeman, S., et al. (2013). Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences, 110(15), 6169–6174. doi: 10.1073/pnas.1219562110.CrossRefGoogle Scholar
  22. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99. doi: 10.1016/j.cognition.2003.10.011.CrossRefPubMedGoogle Scholar
  23. Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research: Neuroimaging, 191(1), 36–43. doi: 10.1016/j.pscychresns.2010.08.006.CrossRefPubMedGoogle Scholar
  24. Hölzel, B. K., Ott, U., Gard, T., Hempel, H., Weygandt, M., Morgen, K., & Vaitl, D. (2008). Investigation of mindfulness meditation practitioners with voxel-based morphometry. Social Cognitive and Affective Neuroscience, 3(1), 55–61. doi: 10.1093/scan/nsm038.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jones, E. G., & Burton, H. (1976). Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. Journal of Comparative Neurology, 168, 197–248. doi: 10.1002/cne.901680203.CrossRefPubMedGoogle Scholar
  26. Kabat-Zinn, J. (1990). Full catastrophe living: using the wisdom of your body and mind to face stress, pain and illness. New York: Delacorte.Google Scholar
  27. Kasper, R. W., Elliott, J. C., & Giesbrecht, B. (2012). Multiple measures of visual attention predict novice motor skill performance when attention is focused externally. Human Movement Science, 31(5), 1161–1174.CrossRefPubMedGoogle Scholar
  28. Keifer Jr., O. P., Gutman, D., Hecht, E., Keilholz, S., & Ressler, K. J. (2015). A comparative analysis of mouse and human medial geniculate nucleus connectivity: a DTI and anterograde tracing study. NeuroImage, 105, 53–66. doi: 10.1016/j.neuroimage.2014.10.047.CrossRefPubMedGoogle Scholar
  29. Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B., & Liddle, P. F. (2001). Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology, 38, 133–142. doi: 10.1017/s0048577201981867.CrossRefPubMedGoogle Scholar
  30. Kilpatrick, L. A., Suyenobu, B. Y., Smith, S. R., Bueller, J. A., Goodman, T., Creswell, J. D., et al. (2011). Impact of mindfulness-based stress reduction training on intrinsic brain connectivity. NeuroImage, 56(1), 290–298.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kirk, U., Gu, X., Harvey, A. H., Fonagy, P., & Montague, P. R. (2014). Mindfulness training modulates value signals in ventromedial prefrontal cortex through input from insular cortex. NeuroImage, 100, 254–262.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kuperberg, G. R., Broome, M. R., McGuire, P. K., David, A. S., Eddy, M., Ozawa, F., et al. (2003). Regionally localized thinning of the cerebral cortex in schizophrenia. Archives of General Psychiatry, 60(9), 878–888. doi: 10.1001/archpsyc.60.9.878.CrossRefPubMedGoogle Scholar
  33. Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 1893–1897.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Luders, E., Kurth, F., Mayer, E. A., Toga, A. W., Narr, K. L., & Gaser, C. (2012). The unique brain anatomy of meditation practitioners: alterations in cortical gyrification. Frontiers in Human Neuroscience, 6(34), 1–9. doi: 10.3389/fnhum.2012.00034.Google Scholar
  35. MacLean, K. A., Ferrer, E., Aichele, S. R., Bridwell, D. A., Zanesco, A. P., Jacobs, T. L., et al. (2010). Intensive meditation training improves perceptual discrimination and sustained attention. Psychological Science, 21(6), 829–839. doi: 10.1177/0956797610371339.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mesulam, M. M., & Mufson, E. J. (1985). The insula of Reil in man and monkey. Architectonics, connectivity and function. In E. G. Jones & A. Peters (Eds.). Cerebral cortex, 4. New York: Plenum Press.  10.1007/978-1-4757-9619-3_5
  37. Mooneyham, B. W., Mrazek, M. D., Mrazek, A. J., Schooler, J.W. (2016) Signal or noise: brain network interactions underlying the experience and training of mindfulness. Proceedings of the New York Academy of Sciences. Advance online publication.  10.1111/nyas.13044.
  38. Mooneyham, B.W., Mrazek, M.D., Mrazek, A.J., Mrazek, K.L., Phillips, D.T., & Schooler, J.W. (2017). States of mind: characterizing the neural bases of focus and mind-wandering through dynamic functional connectivity. Journal of Cognitive Neuroscience.Google Scholar
  39. Mothes-Lasch, M., Becker, M. P. I., Miltner, W. H. R., & Straube, T. (2016). Neural basis of processing threatening voices in a crowded auditory world. Social Cognitive and Affective Neuroscience, 1–8.  10.1093/scan/nsw022
  40. Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2012). Mindfulness & mind-wandering: finding convergence through opposing constructs. Emotion, 12(13), 442–448.CrossRefPubMedGoogle Scholar
  41. Mrazek, M. D., Franklin, M. S., Phillips, D. T., Baird, B., & Schooler, J. W. (2013). Mindfulness training improves WMC & GRE performance while reducing mind-wandering. Psychological Science, 24(5), 776–781.CrossRefPubMedGoogle Scholar
  42. Mrazek, M. D., Mooneyham, B. W., & Schooler, J. W. (2014). Insights from quiet minds: the converging fields of mindfulness and mind-wandering. In Meditation: neuroscientific approaches and philosophical implications, Schmidt, S. & Walach, H. (Eds.), 227–241.Google Scholar
  43. Mrazek, M. D., Mooneyham, B. W., Mrazek, K. L., & Schooler, J. W. (2016). Pushing the limits: cognitive, affective, and neural plasticity revealed by an intensive multifaceted intervention. Frontiers in Human Neuroscience, 10.  10.3389/fnhum.2016.00117
  44. Oppenheimer, S. M., Gelb, A., Girvin, J. P., & Hachinski, V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42, 1727–1732. doi: 10.1212/WNL.42.9.1727.CrossRefPubMedGoogle Scholar
  45. Petrides, M., & Pandya, D. N. (2002). Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. European Journal of Neuroscience, 16(2), 291–310. doi: 10.1046/j.1460-9568.2001.02090.x.CrossRefPubMedGoogle Scholar
  46. Plakke, B., & Romanski, L. M. (2014). Auditory connections and functions of prefrontal cortex. Frontiers in Neuroscience, 8.  10.3389/fnins.2014.00199
  47. Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724. doi: 10.1038/nn.2331.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Remedios, R., Logothetis, N. K., & Kayser, C. (2009). An auditory region in the primate insular cortex responding preferentially to vocal communication sounds. The Journal of Neuroscience, 29(4), 1034–1045. doi: 10.1523/JNEUROSCI.4089-08.2009.CrossRefPubMedGoogle Scholar
  49. Rivier, F., & Clarke, S. (1997). Cytochrome oxidase, acetylcholinesterase and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage, 6, 288–304. doi: 10.1006/nimg.1997.0304.CrossRefPubMedGoogle Scholar
  50. Rosas, H. D., Liu, A. K., Hersch, S., Glessner, M., Ferrante, R. J., Salat, D. H., et al. (2002). Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology, 58(5), 695–701. doi: 10.1212/WNL.58.5.695.CrossRefPubMedGoogle Scholar
  51. Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S. R., Busa, E., et al. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7), 721–730. doi: 10.1093/cercor/bhh032.CrossRefPubMedGoogle Scholar
  52. Schönwiesner, M., Novitski, N., Pakarinen, S., Carlson, S., Tervaniemi, M., & Näätänen, R. (2007). Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. Journal of Neurophysiology, 97(3), 2075–2082. doi: 10.1152/jn.01083.2006.CrossRefPubMedGoogle Scholar
  53. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sudakov, K., McLean, P. D., Reeves, A., & Marino, R. (1971). Unit study of exteroceptive inputs to claustrocortex in awake sitting squirrel monkeys. Brain Research, 28, 19–34. doi: 10.1016/0006-8993(71)90521-x.CrossRefPubMedGoogle Scholar
  55. Sze, J. A., Gyurak, A., Yuan, J. W., & Levenson, R. W. (2010). Coherence between emotional experience and physiology: does body awareness training have an impact? Emotion, 10(6), 803–814 Scholar
  56. Visser, M., Jefferies, E., Embleton, K. V., & Lambon Ralph, M. A. (2012). Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. Journal of Cognitive Neuroscience, 24(8), 1766–1778. doi: 10.1162/jocn_a_00244.CrossRefPubMedGoogle Scholar
  57. Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2, 32. doi: 10.3389/fnagi.2010.00032.PubMedPubMedCentralGoogle Scholar
  58. Vossel, S., Weidner, R., & Fink, G. R. (2011). Dynamic coding of events within the inferior frontal gyrus in a probabilistic selective attention task. Journal of Cognitive Neuroscience, 23(2), 414–424. doi: 10.1162/jocn.2010.21441.CrossRefPubMedGoogle Scholar
  59. Wells, R. E., Yeh, G. Y., Kerr, C. E., Wolkin, J., Davis, R. B., Tan, Y., et al. (2013). Meditation’s impact on default mode network and hippocampus in mild cognitive impairment: a pilot study. Neuroscience Letters, 556, 15–19. doi: 10.1016/j.neulet.2013.10.001.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations