Journal of Cognitive Enhancement

, Volume 1, Issue 2, pp 228–234 | Cite as

Differences in Default Mode Network Connectivity in Meditators and Non-meditators During an Attention Task

  • Elisa H. KozasaEmail author
  • João R. Sato
  • Tamara A. Russell
  • Maria A. M. Barreiros
  • Shirley S. Lacerda
  • João Radvany
  • Luiz E. A. M. Mello
  • Edson AmaroJr
Original Article


Activity in the default mode network (DMN) is reduced during non-self-referential goal-directed tasks in healthy individuals. In this study, we investigated differences in DMN functional connectivity between regular meditators and non-meditators during an attention paradigm. Non-meditators and regular meditators, matched by age, years of education, and gender were instructed to name the color of single words visually presented in a Stroop Word-Color Task (SWCT) adapted for functional magnetic resonance imaging (fMRI). The task was performed when the participants were not formally meditating. Logistic analysis based on imaging data indicated that the connectivity between the PCC (precuneus/posterior cingulate cortex) and the right and left parietal lobules helps differentiating regular meditators from non-meditators. Granger causality results showed that the activity in the PCC contains information to predict the activity in the right lateral parietal cortex and that the accuracy in this prediction is higher in regular meditators when compared to non-meditators. This suggests a stronger link between these two regions in regular meditators. In contrast to regular meditators, the PCC is more influenced by the left parietal region (related to the process of reading—which is the interference in the SWCT), and this region is more influenced by the PCC in non-meditators. These functional connectivity differences in the DMN between groups possibly reflect a higher degree of interference and probably more distraction during the SWCT in non-meditators compared with meditators.


Meditation Attention Default mode Stroop task fMRI 



This work was supported by Instituto Israelita de Ensino e Pesquisa Albert Einstein—IIEPAE, Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (476288/2009-6), and Associação Fundo de Incentivo à Pesquisa—AFIP. Authors would like to thank Coen sensei, Zendo Brasil staff for discussing the inclusion/exclusion criteria, Marta O. S. Freitas for helping with the recruitment of volunteers for this study, and Liana G. Sanches for the technical support.


  1. Beckmann, C. F., & Smith, S. M. (2005). Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage, 25(1), 294–311.CrossRefPubMedGoogle Scholar
  2. Berkovich-Ohana, A., Harel, M., Hahamy, A., Arieli, A., & Malach, R. (2016a). Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators. NeuroImage, 135, 125–134.CrossRefPubMedGoogle Scholar
  3. Berkovich-Ohana, A., Harel, M., Hahamy, A., Arieli, A., & Malach, R. (2016b). Data for default network reduced functional connectivity in meditators, negatively correlated with meditation expertise. Data in Brief, 15(8), 910–914.CrossRefGoogle Scholar
  4. Brefczynski-lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11483–11488.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20254–20259.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buckner, R. L., Andrews-hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefPubMedGoogle Scholar
  7. Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: an H2 15O pet study of Stroop task performance. NeuroImage, 2(4), 264–272.CrossRefPubMedGoogle Scholar
  8. Farb, N. A. S., Segal, V., & Anderson, A. K. (2013). Mindfulness meditation training alters cortical representations of interoceptive attention. Social, Cognitive & Affective Neuroscience, 8(1), 15–26.CrossRefGoogle Scholar
  9. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. NeuroImage, 42(3), 1178–1184.CrossRefPubMedGoogle Scholar
  11. Froeliger, B., Garland, E. L., Kozink, R. V., Modlin, L. A., Chen, N. K., McClernon, F. J., Greeson, J. M., & Sobin, P. (2012). Meditation-state functional connectivity (msFC): strengthening of the dorsal attention network and beyond. Evidence Based Complementary and Alternative Medicine, 2012, 680407.PubMedPubMedCentralGoogle Scholar
  12. Garrison, K. A., Zeffiro, T. A., Scheinost, D., Constable, R. T., & Brewerm, J. A. (2015). Meditation leads to reduced default mode network activity beyond an active task. Cognitive Affective and Behavioral Neuroscience., 15(3), 712–720.CrossRefGoogle Scholar
  13. Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10(9), 829–839.CrossRefPubMedGoogle Scholar
  14. Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D., & Burgess, P. W. (2007). Comment on “wandering minds: the default network and stimulus-independent thought”. Science, 317(5834), 43.CrossRefPubMedGoogle Scholar
  15. Gruberger, M., Ben-Simon, E., Levkovitz, Y., Zangen, A., & Hendler, T. (2011). Towards a neuroscience of mind-wandering. Frontiers in Human Neuroscience, 5, 56.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Harrison, B. J., Shaw, M., Yücel, M., Purcell, R., Brewer, W. J., Strother, S. C., Egan, G. F., Olver, J. S., Nathan, P. J., & Pantelis, C. (2005). Functional connectivity during Stroop task performance. NeuroImage, 24(1), 181–191.CrossRefPubMedGoogle Scholar
  17. Hasenkamp, W., & Barsalou, L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Frontiers in Human Neuroscience, 6, 38.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537–559.CrossRefPubMedGoogle Scholar
  19. Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cognitive, Affective & Behavioral Neurosciences, 7(2), 109–119.CrossRefGoogle Scholar
  20. Kozasa, E. H., Sato, J. R., Lacerda, S. S., Barreiros, M. A. M., Radvany, J., Russell, T. A., Sanches, L. G., Mello, L. E. A. M., & Amaro Jr., E. (2012). Meditation training increases brain efficiency in an attention task. NeuroImage, 59(1), 745–749.CrossRefPubMedGoogle Scholar
  21. Moore, A., & Malinowski, P. (2009). Meditation, mindfulness and cognitive flexibility. Consciousness and Cognition, 18(1), 176–186.CrossRefPubMedGoogle Scholar
  22. Pagnoni, G., Cekic, M., & Guo, Y. (2008). “Thinking about not-thinking”: neural correlates of conceptual processing during zen meditation. PloS One, 3(9), e3083.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258.CrossRefPubMedGoogle Scholar
  24. Peterson, B. S., Potenza, M. N., Wang, Z., Zhu, H., Martin, A., Marsh, R., Plessen, K. J., & Yu, S. (2009). An fMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. American Journal of Psychiatry, 166(11), 1286–1294.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Raichle, M. E., Macleod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 25(1), 230–242.CrossRefPubMedGoogle Scholar
  27. Scheibner, H.J., Bogler, C., Gleich, T., Haynes, J.D., Bermpohl, F. (2010). Internal and external attention and the default mode network. NeuroImage 2017 18(148):381–389.Google Scholar
  28. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., Mintun, M. A., Wang, S., Coalson, R. S., & Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1942–1947.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Simon, R., & Engström, M. (2015). The default mode network as a biomarker for monitoring the therapeutic effects of meditation. Frontiers in Psychology, 6, 776.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J. M., & Davidson, R. J. (2007). Mental training affects distribution of limited brain resources. PLoS Biology, 5(6), e138.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Slagter, H. A., Lutz, A., Greischar, L. L., Nieuwenhuis, S., & Davidson, R. J. (2009). Theta phase synchrony and conscious target perception: impact of intensive mental training. Journal of Cognitive Neuroscience, 21(8), 1536–1549.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tomasino, B., Fregona, S., Skrap, M., & Fabbro, F. (2013). Meditation-related activations are modulated by the practices needed to obtain it and by the expertise: an ALE meta-analysis study. Frontiers in Human Neuroscience, 6, 346.CrossRefPubMedPubMedCentralGoogle Scholar
  35. van der Mark, S., Klaver, P., Bucher, K., Maurer, U., Schulz, E., Brem, S., Martin, E., & Brandeis, D. (2011). The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. NeuroImage, 54(3), 2426–2436.CrossRefPubMedGoogle Scholar
  36. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Elisa H. Kozasa
    • 1
    • 2
    Email author return OK on get
  • João R. Sato
    • 3
    • 4
  • Tamara A. Russell
    • 5
  • Maria A. M. Barreiros
    • 1
  • Shirley S. Lacerda
    • 1
  • João Radvany
    • 6
  • Luiz E. A. M. Mello
    • 7
  • Edson AmaroJr
    • 1
    • 3
  1. 1.Instituto do CérebroHospital Israelita Albert EinsteinSão PauloBrazil
  2. 2.Department of PsychobiologyUniversidade Federal De São PauloSão PauloBrazil
  3. 3.Universidade Federal do ABCSanto AndréBrazil
  4. 4.Instituto de RadiologiaUniversidade de São PauloSão PauloBrazil
  5. 5.Institute of Psychiatry, King’s College LondonLondonUK
  6. 6.Department of ImagingHospital Israelita Albert EinsteinSão PauloBrazil
  7. 7.Department of PhysiologyUniversidade Federal de São PauloSão PauloBrazil

Personalised recommendations