The Changing Face of Video Games and Video Gamers: Future Directions in the Scientific Study of Video Game Play and Cognitive Performance

Abstract

Research into the perceptual, attentional, and cognitive benefits of playing video games has exploded over the past several decades. However, the methodologies in use today are becoming outdated, as both video games and the gamers themselves are constantly evolving. The purpose of this commentary is to highlight some of the ongoing changes that are occurring in the video game industry, as well as to discuss how these changes may affect research into the effects of gaming on perception, attention, and cognition going forward. The commentary focuses on two main areas: (1) the ways in which video games themselves have changed since the early 2000s, including the rise of various “hybrid” genres, the emergence of distinct new genres, and the increasing push toward online/open-world games, and (2) how video game players have changed since the early 2000s, including shifts in demographics, the decreasing specialization of gamers, and the fact that gamers today now have a long gaming history. In all cases, we discuss possible changes in the methods used to study the impact of video games on cognitive performance that these shifts in the gaming landscape necessitate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson, B. C. A., & Bushman, B. J. (2001). Effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, and prosocial behaviour: a meta-analytic review of the scientific literature. Psychological Science, 12(5), 353–359. doi:10.1111/1467-9280.00366.

    Article  PubMed  Google Scholar 

  2. Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.

    Article  PubMed  Google Scholar 

  3. Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765–777. doi:10.1037/a0013494.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: learning to learn and action video games. Annual Review of Neuroscience, 35, 391–416. doi:10.1146/annurev-neuro-060909.

    Article  PubMed  Google Scholar 

  5. Bediou, B., Adams, D., Mayer, R. E., Green, C. S., & Bavelier, D. (under review). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin.

  6. Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention, Perception, & Psychophysics, 75(6), 1128–1136. doi:10.3758/s13414-013-0487-0.

    Article  Google Scholar 

  7. Blacker, K. J., Curby, K. M., Klobusicky, E., & Chein, J. M. (2014). Effects of action video game training on visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1992. doi:10.1037/a0037556.

    PubMed  Google Scholar 

  8. Chiappe, D., Conger, M., Liao, J., Caldwell, J. L., & Vu, K.-P. L. (2013). Improving multi-tasking ability through action videogames. Applied Ergonomics, 44(2), 278–284. doi:10.1016/j.apergo.2012.08.002.

    Article  PubMed  Google Scholar 

  9. Colzato, L. S., van Leeuwen, P. J. A., van den Wildenberg, W. P. M., & Hommel, B. (2010). DOOM’d to switch: superior cognitive flexibility in players of first person shooter games. Frontiers in Psychology, 1, 8. doi:10.3389/fpsyg.2010.00008.

    PubMed  PubMed Central  Google Scholar 

  10. Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77(2), 234–239. doi:10.1007/s00426-012-0415-2.

    Article  PubMed  Google Scholar 

  11. De Schutter, B. (2010). Never too old to play: the appeal of digital games to an older audience. Games and Culture, 6(2), 155–170. doi:10.1177/1555412010364978.

    Article  Google Scholar 

  12. Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72(4), 1120–1129. doi:10.3758/APP.72.4.1120.

    Article  Google Scholar 

  13. Dorval, M., & Pepin, M. (1986). Effect of playing a video game on a measure of spatial visualization. Perceptual Motor Skills, 62, 159–162. doi:10.2466/pms.1986.62.1.159.

    Article  PubMed  Google Scholar 

  14. Dye, M. W. G., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50(4), 452–459. doi:10.1016/j.visres.2009.10.010.

    Article  PubMed  Google Scholar 

  15. Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). The development of attention skills in action video game players. Neuropsychologia, 47(8–9), 1780–1789. doi:10.1016/j.neuropsychologia.2009.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Entertainment Software Association. (2015). 2015 essential facts about the computer and video game industry. Social Science Computer Review, 4(1), 2–4.

    Google Scholar 

  17. Ericsson. (2015). Ericsson Mobility Report. Retrieved from http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf.

  18. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855. doi:10.1111/j.1467-9280.2007.01990.x.

    Article  PubMed  Google Scholar 

  19. Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology: CB, 23(6), 462–466. doi:10.1016/j.cub.2013.01.044.

    Article  PubMed  Google Scholar 

  20. Gagnon, D. (1985). Videogames and spatial skills: an exploratory study. ECTJ, 33(4), 263–275. doi:10.1007/BF02769363.

    Google Scholar 

  21. Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment, 1(1), 20. doi:10.1145/950566.950595.

    Article  Google Scholar 

  22. Gentile, D. (2009). Pathological video-game use among youth ages 8 to 18: a national study. Psychological Science, 20(5), 594–602. doi:10.1111/j.1467-9280.2009.02340.x.

    Article  PubMed  Google Scholar 

  23. Gentile, D. A., Choo, H., Liau, A., Sim, T., Li, D., Fung, D., & Khoo, A. (2011). Pathological video game use among youths: a two-year longitudinal study. Pediatrics, 127(2), e319–e329. doi:10.1542/peds.2010-1353.

    Article  PubMed  Google Scholar 

  24. Glass, B. D., Maddox, W. T., & Love, B. C. (2013). Real-time strategy game training: emergence of a cognitive flexibility trait. PloS One, 8(8), e70350. doi:10.1371/journal.pone.0070350.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gopher, D., Weil, M., & Bareket, T. (1994). Transfer of skill from a computer game trainer to flight. Human Factors: The Journal of the Human Factors and Ergonomics Society, 36(3), 387–405. doi:10.1177/001872089403600301.

    Article  Google Scholar 

  26. Granic, I., Lobel, A., & Engels, R. C. M. E. (2014). The benefits of playing video games. American Psychologist, 69(1), 66–78. doi:10.1037/a0034857.

    Article  PubMed  Google Scholar 

  27. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537. doi:10.1038/nature01647.

    Article  PubMed  Google Scholar 

  28. Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101(1), 217–245. doi:10.1016/j.cognition.2005.10.004.

    Article  PubMed  Google Scholar 

  29. Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94. doi:10.1111/j.1467-9280.2007.01853.x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28(3), 984–994. doi:10.1016/j.chb.2011.12.020.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Green, C. S., Kattner, F., Eichenbaum, A., Bediou, B., Adams, D., Mayer, R., & Bavelier, D. (2017). Playing some video games but not others is related to cognitive abilities—a critique of Unsworth et al. (2015). Psychological Science. doi:10.1177/0956797616644837

  32. Greenfield, P. M., Brannon, C., & Lohr, D. (1994a). Two-dimensional representation of movement through three-dimensional space: the role of video game expertise. Journal of Applied Developmental Psychology, 15, 87–103.

    Article  Google Scholar 

  33. Greenfield, P. M., DeWinstanley, P., Kilpatrick, H., & Kaye, D. (1994b). Action video games and informal education: effects on strategies for dividing visual attention. Journal of Applied Developmental Psychology, 15, 105–123.

    Article  Google Scholar 

  34. Griffith, J. L., Voloschin, P., Gibb, G. D., & Bailey, J. R. (1983). Differences in eye-hand motor coordination of video-game users and non-users. Perceptual and Motor Skills, 57, 155–158.

    Article  PubMed  Google Scholar 

  35. Grubb, J. (2015). Electronic arts made 77% of its Q1 2016 revenue from digital sales. Retrieved from http://venturebeat.com/2015/07/30/electronic-arts-made-77-of-its-q1-2016-revenue-from-digital-sales/.

  36. Hartmann, T., & Klimmt, C. (2006). Gender and computer games: exploring females’ dislikes. Journal of Computer-Mediated Communication, 11(4), 910–931. doi:10.1111/j.1083-6101.2006.00301.x.

    Article  Google Scholar 

  37. Harwell, D. (2014). More women play video games than boys, and other surprising facts lost in the mess of Gamergate. Washington Post. Retrieved from https://www.washingtonpost.com/news/the-switch/wp/2014/10/17/more-women-play-video-games-than-boys-and-other-surprising-facts-lost-in-the-mess-of-gamergate/.

  38. van Hooren, S. A. H., Valentijn, A. M., Bosma, H., Ponds, R. W. H. M., van Boxtel, M. P. J., & Jolles, J. (2007). Cognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 14(1), 40–54. doi:10.1080/138255890969483.

    Article  Google Scholar 

  39. Hubert-Wallander, B., Green, C. S., & Bavelier, D. (2011). Stretching the limits of visual attention: the case of action video games. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2), 222–230. doi:10.1002/wcs.116.

    PubMed  Google Scholar 

  40. Kabali, H. K., Irigoyen, M. M., Nunez-Davis, R., Budacki, J. G., Mohanty, S. H., Leister, K. P., & Bonner, R. L. (2015). Exposure and use of mobile media devices by young children. Pediatrics, 136(6), 1044–1050. doi:10.1542/peds.2015-2151.

    Article  PubMed  Google Scholar 

  41. Kätsyri, J., Hari, R., Ravaja, N., & Nummenmaa, L. (2013). The opponent matters: elevated fMRI reward responses to winning against a human versus a computer opponent during interactive video game playing. Cerebral Cortex, 23(12), 2829–2839.

    Article  PubMed  Google Scholar 

  42. Kennedy, A. M., Boyle, E. M., Traynor, O., Walsh, T., & Hill, A. D. K. (2011). Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees. Journal of Surgical Education, 68(5), 414–420. doi:10.1016/j.jsurg.2011.03.009.

    Article  PubMed  Google Scholar 

  43. King, D., Delfabbro, P., & Griffiths, M. (2010). Video game structural characteristics: a new psychological taxonomy. International Journal of Mental Health and Addiction, 8(1), 90–106.

    Article  Google Scholar 

  44. Kuss, D. J., & Griffiths, M. D. (2012). Internet gaming addiction: a systematic review of empirical research. International Journal of Mental Health and Addiction, 10(2), 278–296. doi:10.1007/s11469-011-9318-5.

    Article  Google Scholar 

  45. Lemmens, J. S., Valkenburg, P. M., & Peter, J. (2011). Psychosocial causes and consequences of pathological gaming. Computers in Human Behavior, 27(1), 144–152. doi:10.1016/j.chb.2010.07.015.

    Article  Google Scholar 

  46. Li, R., Polat, U., Makous, W., & Bavelier, D. (2010a). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551. doi:10.1038/nn.2296.

    Article  Google Scholar 

  47. Li, R., Polat, U., Scalzo, F., & Bavelier, D. (2010b). Reducing backward masking through action game training. Journal of Vision, 10(14), 1–13. doi:10.1167/10.14.33.

    Article  PubMed  Google Scholar 

  48. Li, R. W., Ngo, C., Nguyen, J., & Levi, D. M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology, 9(8), e1001135. doi:10.1371/journal.pbio.1001135.

    Article  PubMed  PubMed Central  Google Scholar 

  49. McDermott, A. F., Bavelier, D., & Green, C. S. (2014). Memory abilities in action video game players. Computers in Human Behavior, 34, 69–78. doi:10.1016/j.chb.2014.01.018.

    Article  Google Scholar 

  50. McGonigal, J. (2011). Reality is broken: why games make us better and how they can change the world. London: Penguin.

    Google Scholar 

  51. McKinley, R. A., McIntire, L. K., & Funke, M. A. (2011). Operator selection for unmanned aerial systems: comparing video game players and pilots. Aviation, Space, and Environmental Medicine, 82(6), 635–642. doi:10.3357/ASEM.2958.2011.

    Article  PubMed  Google Scholar 

  52. Oei, A. C., & Patterson, M. D. (2013). Enhancing cognition with video games: a multiple game training study. PloS One, 8(3), e58546. doi:10.1371/journal.pone.0058546.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: gender effects in late adolescence. Journal of Applied Developmental Psychology, 15(1), 33–58. doi:10.1016/0193-3973(94)90005-1.

    Article  Google Scholar 

  54. Phan, M. H., Jardina, J. R., & Hoyle, W. S. (2012). Video games: males prefer violence while females prefer social. Usability News, 14(1). Retrieved from http://usabilitynews.org/video-games-males-prefer-violence-while-females-prefer-social/.

  55. Poikolainen, K., Podkletnova, I., & Alho, H. (2002). Accuracy of quantity–frequency and graduated frequency questionnaires in measuring alcohol intake: comparison with daily diary and commonly used laboratory markers. Alcohol and Alcoholism, 37(6), 573–576. doi:10.1093/alcalc/37.6.573.

    Article  PubMed  Google Scholar 

  56. Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychonomic Bulletin & Review, 20(6), 1055–1079. doi:10.3758/s13423-013-0418-z.

    Article  Google Scholar 

  57. Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21. doi:10.1145/950566.950596.

    Article  Google Scholar 

  58. Russoniello, C. V., O’Brien, K., & Parks, J. M. (2009). The effectiveness of casual video games in improving mood and decreasing stress. Journal of Cyber Therapy and Rehabilitation, 2(1), 53–66.

    Google Scholar 

  59. Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video games: a self-determination theory approach. Motivation and Emotion, 30(4), 347–363. doi:10.1007/s11031-006-9051-8.

    Article  Google Scholar 

  60. Schlickum, M. K., Hedman, L., Enochsson, L., Kjellin, A., & Felländer-Tsai, L. (2009). Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: a prospective randomized study. World Journal of Surgery, 33(11), 2360–2367. doi:10.1007/s00268-009-0151-y.

    Article  PubMed  Google Scholar 

  61. Sherry, J. L. (2001). The effects of violent video games on aggression: a meta-analysis. Human Communication Research, 27(3), 409–431. doi:10.1093/hcr/27.3.409.

    Google Scholar 

  62. Sobell, L. C., & Sobell, M. B. (2003). Alcohol consumption measures. In J. P. Allen & V.B. Wilson (eds.), Assessing alcohol problems: A guide for clinicians and researchers.

  63. Souders, D. J., Boot, W. R., Charness, N., & Moxley, J. H. (2015). Older adult video game preferences in practice: investigating the effects of competing or cooperating. Games and Culture, 1555412015603538. doi:10.1177/1555412015603538.

  64. Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92–104. doi:10.1037/a0019491.

    Article  Google Scholar 

  65. Strobach, T., Frensch, P. A., & Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24. doi:10.1016/j.actpsy.2012.02.001.

    Article  PubMed  Google Scholar 

  66. Subrahmanyam, K., & Greenfield, P. M. (1994). Effect of video game practice on spatial skills in girls and boys. Journal of Applied Developmental Psychology, 15, 13–32.

    Article  Google Scholar 

  67. Sungur, H., & Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139(2), 327–334. doi:10.1016/j.actpsy.2011.12.002.

    Article  PubMed  Google Scholar 

  68. Te, Z. (2015). Valve showing new virtual reality hardware at GDC. Retrieved from http://www.gamespot.com/articles/valve-showing-new-virtual-reality-hardware-at-gdc/1100-6425474/.

  69. Toril, P., Reales, J. M., & Ballesteros, S. (2014). Video game training enhances cognition of older adults: a meta-analytic study. Psychology and Aging, 29(3), 706–716. doi:10.1037/a0037507.

    Article  PubMed  Google Scholar 

  70. Unsworth, N., Redick, T. S., McMillan, B. D., Hambrick, D. Z., Kane, M. J., & Engle, R. W. (2015). Is playing video games related to cognitive abilities? Psychological Science, 26(6), 759–774.

    Article  PubMed  Google Scholar 

  71. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270.

    Article  PubMed  Google Scholar 

  72. Wilms, I. L., Petersen, A., & Vangkilde, S. (2013). Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychologica, 142(1), 108–118. doi:10.1016/j.actpsy.2012.11.003.

    Article  PubMed  Google Scholar 

  73. Wu, S., & Spence, I. (2013). Playing shooter and driving videogames improves top-down guidance in visual search. Attention, Perception & Psychophysics, 75(4), 673–686. doi:10.3758/s13414-013-0440-2.

    Article  Google Scholar 

  74. Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., & Spence, I. (2012). Playing a first-person shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24(6), 1286–1293. doi:10.1162/jocn_a_00192.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gillian Dale.

Ethics declarations

Funding

This research was supported by a grant from the Office of Naval Research N00014- 14-1-0512 to C.S.G.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dale, G., Shawn Green, C. The Changing Face of Video Games and Video Gamers: Future Directions in the Scientific Study of Video Game Play and Cognitive Performance. J Cogn Enhanc 1, 280–294 (2017). https://doi.org/10.1007/s41465-017-0015-6

Download citation

Keywords

  • Video games
  • Cognition
  • Methodology