Advertisement

Journal of Cognitive Enhancement

, Volume 1, Issue 3, pp 280–294 | Cite as

The Changing Face of Video Games and Video Gamers: Future Directions in the Scientific Study of Video Game Play and Cognitive Performance

  • Gillian DaleEmail author
  • C. Shawn Green
Opinion

Abstract

Research into the perceptual, attentional, and cognitive benefits of playing video games has exploded over the past several decades. However, the methodologies in use today are becoming outdated, as both video games and the gamers themselves are constantly evolving. The purpose of this commentary is to highlight some of the ongoing changes that are occurring in the video game industry, as well as to discuss how these changes may affect research into the effects of gaming on perception, attention, and cognition going forward. The commentary focuses on two main areas: (1) the ways in which video games themselves have changed since the early 2000s, including the rise of various “hybrid” genres, the emergence of distinct new genres, and the increasing push toward online/open-world games, and (2) how video game players have changed since the early 2000s, including shifts in demographics, the decreasing specialization of gamers, and the fact that gamers today now have a long gaming history. In all cases, we discuss possible changes in the methods used to study the impact of video games on cognitive performance that these shifts in the gaming landscape necessitate.

Keywords

Video games Cognition Methodology 

Notes

Compliance with Ethical Standards

Funding

This research was supported by a grant from the Office of Naval Research N00014- 14-1-0512 to C.S.G.

References

  1. Anderson, B. C. A., & Bushman, B. J. (2001). Effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, and prosocial behaviour: a meta-analytic review of the scientific literature. Psychological Science, 12(5), 353–359. doi: 10.1111/1467-9280.00366.CrossRefPubMedGoogle Scholar
  2. Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.CrossRefPubMedGoogle Scholar
  3. Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765–777. doi: 10.1037/a0013494.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: learning to learn and action video games. Annual Review of Neuroscience, 35, 391–416. doi: 10.1146/annurev-neuro-060909.CrossRefPubMedGoogle Scholar
  5. Bediou, B., Adams, D., Mayer, R. E., Green, C. S., & Bavelier, D. (under review). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin.Google Scholar
  6. Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention, Perception, & Psychophysics, 75(6), 1128–1136. doi: 10.3758/s13414-013-0487-0.CrossRefGoogle Scholar
  7. Blacker, K. J., Curby, K. M., Klobusicky, E., & Chein, J. M. (2014). Effects of action video game training on visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1992. doi: 10.1037/a0037556.PubMedGoogle Scholar
  8. Chiappe, D., Conger, M., Liao, J., Caldwell, J. L., & Vu, K.-P. L. (2013). Improving multi-tasking ability through action videogames. Applied Ergonomics, 44(2), 278–284. doi: 10.1016/j.apergo.2012.08.002.CrossRefPubMedGoogle Scholar
  9. Colzato, L. S., van Leeuwen, P. J. A., van den Wildenberg, W. P. M., & Hommel, B. (2010). DOOM’d to switch: superior cognitive flexibility in players of first person shooter games. Frontiers in Psychology, 1, 8. doi: 10.3389/fpsyg.2010.00008.PubMedPubMedCentralGoogle Scholar
  10. Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77(2), 234–239. doi: 10.1007/s00426-012-0415-2.CrossRefPubMedGoogle Scholar
  11. De Schutter, B. (2010). Never too old to play: the appeal of digital games to an older audience. Games and Culture, 6(2), 155–170. doi: 10.1177/1555412010364978.CrossRefGoogle Scholar
  12. Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72(4), 1120–1129. doi: 10.3758/APP.72.4.1120.CrossRefGoogle Scholar
  13. Dorval, M., & Pepin, M. (1986). Effect of playing a video game on a measure of spatial visualization. Perceptual Motor Skills, 62, 159–162. doi: 10.2466/pms.1986.62.1.159.CrossRefPubMedGoogle Scholar
  14. Dye, M. W. G., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50(4), 452–459. doi: 10.1016/j.visres.2009.10.010.CrossRefPubMedGoogle Scholar
  15. Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). The development of attention skills in action video game players. Neuropsychologia, 47(8–9), 1780–1789. doi: 10.1016/j.neuropsychologia.2009.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Entertainment Software Association. (2015). 2015 essential facts about the computer and video game industry. Social Science Computer Review, 4(1), 2–4.Google Scholar
  17. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855. doi: 10.1111/j.1467-9280.2007.01990.x.CrossRefPubMedGoogle Scholar
  18. Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology: CB, 23(6), 462–466. doi: 10.1016/j.cub.2013.01.044.CrossRefPubMedGoogle Scholar
  19. Gagnon, D. (1985). Videogames and spatial skills: an exploratory study. ECTJ, 33(4), 263–275. doi: 10.1007/BF02769363.Google Scholar
  20. Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment, 1(1), 20. doi: 10.1145/950566.950595.CrossRefGoogle Scholar
  21. Gentile, D. (2009). Pathological video-game use among youth ages 8 to 18: a national study. Psychological Science, 20(5), 594–602. doi: 10.1111/j.1467-9280.2009.02340.x.CrossRefPubMedGoogle Scholar
  22. Gentile, D. A., Choo, H., Liau, A., Sim, T., Li, D., Fung, D., & Khoo, A. (2011). Pathological video game use among youths: a two-year longitudinal study. Pediatrics, 127(2), e319–e329. doi: 10.1542/peds.2010-1353.CrossRefPubMedGoogle Scholar
  23. Glass, B. D., Maddox, W. T., & Love, B. C. (2013). Real-time strategy game training: emergence of a cognitive flexibility trait. PloS One, 8(8), e70350. doi: 10.1371/journal.pone.0070350.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gopher, D., Weil, M., & Bareket, T. (1994). Transfer of skill from a computer game trainer to flight. Human Factors: The Journal of the Human Factors and Ergonomics Society, 36(3), 387–405. doi: 10.1177/001872089403600301.CrossRefGoogle Scholar
  25. Granic, I., Lobel, A., & Engels, R. C. M. E. (2014). The benefits of playing video games. American Psychologist, 69(1), 66–78. doi: 10.1037/a0034857.CrossRefPubMedGoogle Scholar
  26. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537. doi: 10.1038/nature01647.CrossRefPubMedGoogle Scholar
  27. Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101(1), 217–245. doi: 10.1016/j.cognition.2005.10.004.CrossRefPubMedGoogle Scholar
  28. Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94. doi: 10.1111/j.1467-9280.2007.01853.x.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28(3), 984–994. doi: 10.1016/j.chb.2011.12.020.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Green, C. S., Kattner, F., Eichenbaum, A., Bediou, B., Adams, D., Mayer, R., & Bavelier, D. (2017). Playing some video games but not others is related to cognitive abilities—a critique of Unsworth et al. (2015). Psychological Science. doi: 10.1177/0956797616644837
  31. Greenfield, P. M., Brannon, C., & Lohr, D. (1994a). Two-dimensional representation of movement through three-dimensional space: the role of video game expertise. Journal of Applied Developmental Psychology, 15, 87–103.CrossRefGoogle Scholar
  32. Greenfield, P. M., DeWinstanley, P., Kilpatrick, H., & Kaye, D. (1994b). Action video games and informal education: effects on strategies for dividing visual attention. Journal of Applied Developmental Psychology, 15, 105–123.CrossRefGoogle Scholar
  33. Griffith, J. L., Voloschin, P., Gibb, G. D., & Bailey, J. R. (1983). Differences in eye-hand motor coordination of video-game users and non-users. Perceptual and Motor Skills, 57, 155–158.CrossRefPubMedGoogle Scholar
  34. Grubb, J. (2015). Electronic arts made 77% of its Q1 2016 revenue from digital sales. Retrieved from http://venturebeat.com/2015/07/30/electronic-arts-made-77-of-its-q1-2016-revenue-from-digital-sales/.
  35. Hartmann, T., & Klimmt, C. (2006). Gender and computer games: exploring females’ dislikes. Journal of Computer-Mediated Communication, 11(4), 910–931. doi: 10.1111/j.1083-6101.2006.00301.x.CrossRefGoogle Scholar
  36. Harwell, D. (2014). More women play video games than boys, and other surprising facts lost in the mess of Gamergate. Washington Post. Retrieved from https://www.washingtonpost.com/news/the-switch/wp/2014/10/17/more-women-play-video-games-than-boys-and-other-surprising-facts-lost-in-the-mess-of-gamergate/.
  37. van Hooren, S. A. H., Valentijn, A. M., Bosma, H., Ponds, R. W. H. M., van Boxtel, M. P. J., & Jolles, J. (2007). Cognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 14(1), 40–54. doi: 10.1080/138255890969483.CrossRefGoogle Scholar
  38. Hubert-Wallander, B., Green, C. S., & Bavelier, D. (2011). Stretching the limits of visual attention: the case of action video games. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2), 222–230. doi: 10.1002/wcs.116.PubMedGoogle Scholar
  39. Kabali, H. K., Irigoyen, M. M., Nunez-Davis, R., Budacki, J. G., Mohanty, S. H., Leister, K. P., & Bonner, R. L. (2015). Exposure and use of mobile media devices by young children. Pediatrics, 136(6), 1044–1050. doi: 10.1542/peds.2015-2151.CrossRefPubMedGoogle Scholar
  40. Kätsyri, J., Hari, R., Ravaja, N., & Nummenmaa, L. (2013). The opponent matters: elevated fMRI reward responses to winning against a human versus a computer opponent during interactive video game playing. Cerebral Cortex, 23(12), 2829–2839.CrossRefPubMedGoogle Scholar
  41. Kennedy, A. M., Boyle, E. M., Traynor, O., Walsh, T., & Hill, A. D. K. (2011). Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees. Journal of Surgical Education, 68(5), 414–420. doi: 10.1016/j.jsurg.2011.03.009.CrossRefPubMedGoogle Scholar
  42. King, D., Delfabbro, P., & Griffiths, M. (2010). Video game structural characteristics: a new psychological taxonomy. International Journal of Mental Health and Addiction, 8(1), 90–106.CrossRefGoogle Scholar
  43. Kuss, D. J., & Griffiths, M. D. (2012). Internet gaming addiction: a systematic review of empirical research. International Journal of Mental Health and Addiction, 10(2), 278–296. doi: 10.1007/s11469-011-9318-5.CrossRefGoogle Scholar
  44. Lemmens, J. S., Valkenburg, P. M., & Peter, J. (2011). Psychosocial causes and consequences of pathological gaming. Computers in Human Behavior, 27(1), 144–152. doi: 10.1016/j.chb.2010.07.015.CrossRefGoogle Scholar
  45. Li, R., Polat, U., Makous, W., & Bavelier, D. (2010a). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551. doi: 10.1038/nn.2296.CrossRefGoogle Scholar
  46. Li, R., Polat, U., Scalzo, F., & Bavelier, D. (2010b). Reducing backward masking through action game training. Journal of Vision, 10(14), 1–13. doi: 10.1167/10.14.33.CrossRefPubMedGoogle Scholar
  47. Li, R. W., Ngo, C., Nguyen, J., & Levi, D. M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology, 9(8), e1001135. doi: 10.1371/journal.pbio.1001135.CrossRefPubMedPubMedCentralGoogle Scholar
  48. McDermott, A. F., Bavelier, D., & Green, C. S. (2014). Memory abilities in action video game players. Computers in Human Behavior, 34, 69–78. doi: 10.1016/j.chb.2014.01.018.CrossRefGoogle Scholar
  49. McGonigal, J. (2011). Reality is broken: why games make us better and how they can change the world. London: Penguin.Google Scholar
  50. McKinley, R. A., McIntire, L. K., & Funke, M. A. (2011). Operator selection for unmanned aerial systems: comparing video game players and pilots. Aviation, Space, and Environmental Medicine, 82(6), 635–642. doi: 10.3357/ASEM.2958.2011.CrossRefPubMedGoogle Scholar
  51. Oei, A. C., & Patterson, M. D. (2013). Enhancing cognition with video games: a multiple game training study. PloS One, 8(3), e58546. doi: 10.1371/journal.pone.0058546.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: gender effects in late adolescence. Journal of Applied Developmental Psychology, 15(1), 33–58. doi: 10.1016/0193-3973(94)90005-1.CrossRefGoogle Scholar
  53. Phan, M. H., Jardina, J. R., & Hoyle, W. S. (2012). Video games: males prefer violence while females prefer social. Usability News, 14(1). Retrieved from http://usabilitynews.org/video-games-males-prefer-violence-while-females-prefer-social/.
  54. Poikolainen, K., Podkletnova, I., & Alho, H. (2002). Accuracy of quantity–frequency and graduated frequency questionnaires in measuring alcohol intake: comparison with daily diary and commonly used laboratory markers. Alcohol and Alcoholism, 37(6), 573–576. doi: 10.1093/alcalc/37.6.573.CrossRefPubMedGoogle Scholar
  55. Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychonomic Bulletin & Review, 20(6), 1055–1079. doi: 10.3758/s13423-013-0418-z.CrossRefGoogle Scholar
  56. Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21. doi: 10.1145/950566.950596.CrossRefGoogle Scholar
  57. Russoniello, C. V., O’Brien, K., & Parks, J. M. (2009). The effectiveness of casual video games in improving mood and decreasing stress. Journal of Cyber Therapy and Rehabilitation, 2(1), 53–66.Google Scholar
  58. Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video games: a self-determination theory approach. Motivation and Emotion, 30(4), 347–363. doi: 10.1007/s11031-006-9051-8.CrossRefGoogle Scholar
  59. Schlickum, M. K., Hedman, L., Enochsson, L., Kjellin, A., & Felländer-Tsai, L. (2009). Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: a prospective randomized study. World Journal of Surgery, 33(11), 2360–2367. doi: 10.1007/s00268-009-0151-y.CrossRefPubMedGoogle Scholar
  60. Sherry, J. L. (2001). The effects of violent video games on aggression: a meta-analysis. Human Communication Research, 27(3), 409–431. doi: 10.1093/hcr/27.3.409.Google Scholar
  61. Sobell, L. C., & Sobell, M. B. (2003). Alcohol consumption measures. In J. P. Allen & V.B. Wilson (eds.), Assessing alcohol problems: A guide for clinicians and researchers.Google Scholar
  62. Souders, D. J., Boot, W. R., Charness, N., & Moxley, J. H. (2015). Older adult video game preferences in practice: investigating the effects of competing or cooperating. Games and Culture, 1555412015603538. doi: 10.1177/1555412015603538.
  63. Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92–104. doi: 10.1037/a0019491.CrossRefGoogle Scholar
  64. Strobach, T., Frensch, P. A., & Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24. doi: 10.1016/j.actpsy.2012.02.001.CrossRefPubMedGoogle Scholar
  65. Subrahmanyam, K., & Greenfield, P. M. (1994). Effect of video game practice on spatial skills in girls and boys. Journal of Applied Developmental Psychology, 15, 13–32.CrossRefGoogle Scholar
  66. Sungur, H., & Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139(2), 327–334. doi: 10.1016/j.actpsy.2011.12.002.CrossRefPubMedGoogle Scholar
  67. Te, Z. (2015). Valve showing new virtual reality hardware at GDC. Retrieved from http://www.gamespot.com/articles/valve-showing-new-virtual-reality-hardware-at-gdc/1100-6425474/.
  68. Toril, P., Reales, J. M., & Ballesteros, S. (2014). Video game training enhances cognition of older adults: a meta-analytic study. Psychology and Aging, 29(3), 706–716. doi: 10.1037/a0037507.CrossRefPubMedGoogle Scholar
  69. Unsworth, N., Redick, T. S., McMillan, B. D., Hambrick, D. Z., Kane, M. J., & Engle, R. W. (2015). Is playing video games related to cognitive abilities? Psychological Science, 26(6), 759–774.CrossRefPubMedGoogle Scholar
  70. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270.CrossRefPubMedGoogle Scholar
  71. Wilms, I. L., Petersen, A., & Vangkilde, S. (2013). Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychologica, 142(1), 108–118. doi: 10.1016/j.actpsy.2012.11.003.CrossRefPubMedGoogle Scholar
  72. Wu, S., & Spence, I. (2013). Playing shooter and driving videogames improves top-down guidance in visual search. Attention, Perception & Psychophysics, 75(4), 673–686. doi: 10.3758/s13414-013-0440-2.CrossRefGoogle Scholar
  73. Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., & Spence, I. (2012). Playing a first-person shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24(6), 1286–1293. doi: 10.1162/jocn_a_00192.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations