Skip to main content
Log in

Integrating Machine Learning and Molecular Simulation for Material Design and Discovery

  • Review Article
  • Published:
Transactions of the Indian National Academy of Engineering Aims and scope Submit manuscript

Abstract

Machine learning (ML) and artificial intelligence (AI) have enabled transformative impact on materials science by accelerating cutting-edge insights from computational methods and their analysis to hitherto unattainable scales. Such an assembly of linear algebra and statistical methods can facilitate the conceptual development of flexible techniques by finding mechanism/information/hidden pattern in a data set. The present review provides basic information about the classification of ML methodology and its workflow. These sections also elaborate on the advantages and limitations of various ML algorithms for solving problems in materials science and reviewing cases of success and failure. Subsequently, we show how these techniques can uncover the complexities in several quantitative structure–property relationships to design and discover novel materials for various applications. We conclude our review with an outlook on present research challenges, problems, and potential future perspectives in the field of machine learning. Overall, this review can serve as a fundamental guide to amplify the adoption of such tools and methods by materials scientists across academia and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright 2021 Elsevier

Fig. 5

Copyright 2019 Elsevier

Fig. 6

Copyright 2017, American Chemical Society

Fig. 7

Copyright 2017, American Chemical Society

Fig. 8

Copyright 2020, American Chemical Society

Similar content being viewed by others

Data availability

This is a review article hence no research data were used.

References

  • Abraham BM, Sinha P, Halder P, Singh JK (2023) Fusing machine learning strategy with density functional theory to hasten the discovery of 2D MXene based catalysts for hydrogen generation. J Mater Chem A 11:8091–8100

    Article  Google Scholar 

  • Bannigan P, Bao Z, Hickman RJ, Aldeghi M, Häse F, Aspuru-Guzik A, Allen C (2023) Machine learning models to accelerate the design of polymeric long-acting injectables. Nat Commun 14(1):35

    Article  Google Scholar 

  • Bernstein N, Csanyi G, Kermode J (2019) QUIP, https://github.com/libAtoms/QUIP

  • Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GKH, Marks LD (2020) WIEN2k: An APW+ lo program for calculating the properties of solids. J Chem Phys 152:074101

    Article  Google Scholar 

  • Bolton RJ, Hand DJ (2002) Statistical fraud detection: a review. Stat Sci 17:235–255

    Article  MathSciNet  MATH  Google Scholar 

  • Boobier S, Hose DRJ, Blacker AJ, Nguyen BN (2020) Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nat Commun 11:1–10

    Article  Google Scholar 

  • Burner J, Schwiedrzik L, Krykunov M, Luo J, Boyd PG, Woo TK (2020) High-performing deep learning regression models for predicting low-pressure CO2 adsorption properties of metal-organic frameworks. J Phys Chem C 124:27996–28005

    Article  Google Scholar 

  • Burner J, Luo J, White A, Mirmiran A, Kwon O, Boyd PG, Maley S, Gibaldi M, Simrod S, Ogden V, Woo TK (2023) ARC–MOF: A Diverse database of metal-organic frameworks with DFT-derived partial atomic charges and descriptors for machine learning. Chem Mater 35(3):900–916

    Article  Google Scholar 

  • Cao X, He Y, Zhang Z, Sun Y, Han Q, Guo Y, Zhong C (2022) Predicting of covalent organic frameworks for membrane-based Isobutene/1, 3-butadiene separation: combining molecular simulation and machine learning. Chem Res Chin Univ 38(2):421–427

    Article  Google Scholar 

  • Castro BM, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A (2021) Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 33:530–545

    Article  Google Scholar 

  • Chandrasekaran B, Abed SN, Al-Attraqchi O, Kuche K, Tekade RK (2018) Computer-Aided Prediction of Pharmacokinetic (ADMET) properties. In Dosage Form Design Parameters Elsevier 2:731–755

    Article  Google Scholar 

  • Chanussot L, Das A, Goyal S, Lavril T, Shuaibi M, Riviere M, Tran K, Heras-Domingo J, Ho C, Hu W (2021) Open catalyst 2020 (OC20) dataset and community challenges. ACS Catal 11:6059

    Article  Google Scholar 

  • Chollet F (2015) Keras, https://github.com/fchollet/keras

  • Choudhary K, Garrity KF, Reid ACE, DeCost B, Biacchi AJ, Walker ARH, Trautt Z, Hattrick-Simpers J, Kusne AG, Centrone A (2020a) The joint automated repository for various Integrated Simulations (JARVIS) for data-driven materials design. NPJ Comput Mater 6:173

    Article  Google Scholar 

  • Choudhary K, Garrity KF, Sharma V, Biacchi AJ, Walker AR, Tavazza F (2020b) High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses. NPJ Comput Mater 6:64

    Article  Google Scholar 

  • Chung YG, Camps J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 26:6185–6192

    Article  Google Scholar 

  • Chung YG, Haldoupis E, Bucior BJ, Haranczyk M, Lee S, Hongda Z, Konstantinos DV, Milisavljevic M, Ling S, Camp JS, Slater B, Siepmann JI, Sholl DS, Snurr RQ (2019) Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019. J Chem Eng Data 64:5985–5998

    Article  Google Scholar 

  • Clark SJ, Segall M, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Cryst Mater 220:567

    Google Scholar 

  • Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170

    Article  Google Scholar 

  • Dada EG, Bassi JS, Chiroma H, Abdulhamid SM, Adetunmbi AO, Ajibuwa OE (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5:1–23

    Article  Google Scholar 

  • Dagler H, Keskin S (2022) Combining machine learning and molecular simulations to unlock gas separation potentials of MOF membranes and MOF/Polymer MMMs. ACS Appl Mater Interfaces 14:736–749

    Google Scholar 

  • De Vos JS, Borgmans S, Van Der Voort P, Rogge SMJ, Van Speybroeck V (2023) ReDD-COFFEE: A ready-to-use database of covalent organic framework structures and Ac-curate force fields to enable high-throughput screenings. J Mater Chem 11:7468–7487

    Article  Google Scholar 

  • Deshwal A, Simon CM, Doppa JR (2021) Bayesian optimization of nanoporous materials. Mol Syst Des Eng 6(12):1066–1086

    Article  Google Scholar 

  • Dick S, Fernandez-Serra M (2020) Machine learning accurate exchange and correlation functionals of the electronic density. Nat Commun 11:3509

    Article  Google Scholar 

  • Draxl C, Scheffler M (2018) NOMAD: The FAIR concept for big data-driven materials science. MRS Bull 43:676

    Article  Google Scholar 

  • Dureckova H, Krykunov M, Aghaji MZ, Woo TK (2019) Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture. J Phys Chem C 123:4133–4139

    Article  Google Scholar 

  • Fanourgakis GS, Gkagkas K, Tylianakis E, Klontzas E, Froudakis G (2019) A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials. J Phys Chem A 123:6080–6087

    Article  Google Scholar 

  • Fanourgakis GS, Gkagkas K, Tylianakis E, Froudakis G (2020a) A generic machine learning algorithm for the prediction of gas adsorption in nanoporous materials. J Phys Chem C 124:7117–7126

    Article  Google Scholar 

  • Fanourgakis GS, Gkagkas K, Tylianakis E, Froudakis G (2020b) Fast screening of large databases for top performing nanomaterials using a self-consistent, machine learning based approach. J Phys Chem C 124:19639–19648

    Article  Google Scholar 

  • Fernandez M, Woo TK, Wilmer CE, Snurr RQ (2013) Large-scale Quantitative Structure-Property Relationship (QSPR) analysis of methane storage in metal-organic frameworks. J Phys Chem C 117:7681–7689

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H (2016) Gaussian 16 Revision C.01. Gaussian Inc. Wallingford, CT

  • Fung V, Hu G, Wu Z, Jiang DE (2020) Descriptors for Hydrogen evolution on single atom catalysts in nitrogendoped graphene. J Phys Chem C 124:19571–19578

    Article  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M (2009) Quantum ESPRESSO: a modular and open-source Software Project for quantum simulations of materials. J Phys 21:395502

    Google Scholar 

  • Goldsmith J, Wong-Foy AG, Cafarella MJ, Siegel DJ (2013) Theoretical limits of hydrogen storage in metal-organic frameworks: opportunities and trade-offs. Chem Mater 25:3373–3382

    Article  Google Scholar 

  • Gomez DA, Toda J, Sastre G (2014) Screening of hypothetical metal-organic frameworks for H2 storage. Phys Chem Chem Phys 16:19001–19010

    Article  Google Scholar 

  • Gurnani R, Yu Z, Kim C, Sholl DS, Ramprasad R (2021) Interpretable machine learning-based predictions of methane uptake isotherms in metal-organic frameworks. Chem Mater 33:3543–3552

    Article  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Halder P, Singh JK (2020) High-throughput screening of metal-organic frameworks for ethane-ethylene separation using the machine learning technique. Energy Fuels 34:14591–14597

    Article  Google Scholar 

  • Han S, Kim J (2023) Design and screening of metal-organic frameworks for ethane/ethylene separation. ACS Omega 8(4):4278–4284

    Article  Google Scholar 

  • Hatcher WG, Qian C, Gao W, Liang F, Hua K, Yu W (2021) Towards efficient and intelligent internet of things search engine. IEEE Access 9:15778–15795

    Article  Google Scholar 

  • Huber SP, Zoupanos S, Uhrin M, Talirz L, Kahle L, Häuselmann R, Gresch D, Müller T, Yakutovich AV, Andersen CW (2020) Aiida 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci Data 7:300

    Article  Google Scholar 

  • Innes MJ (2018) Open Source Software 3:602

    Article  Google Scholar 

  • Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A (2017) Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun 8:15679

    Article  Google Scholar 

  • Juneja R, Singh AK (2020) Unraveling the role Of bonding chemistry in connecting electronic and thermal transport by machine learning. J Mater Chem A 8:8716

    Article  Google Scholar 

  • Jyothirmai MV, Roshini D, Abraham BM, Singh JK (2023) Accelerating the discovery of g-C3N4-supported single atom catalysts for hydrogen evolution reaction: a combined DFT and machine learning strategy. ACS Appl Energy Mater

  • Khorshidi A, Peterson AA (2016) Amp: a modular approach to machine learning in atomistic simulations. Comput Phys Commun 207:310

    Article  Google Scholar 

  • Kombo DC, Tallapragada K, Jain R, Chewning J, Mazurov AA, Speake JD, Hauser TA, Toler S (2013) 3D molecular descriptors important for clinical success. J Chem Inf Model 53:327–342

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  • Lamanna C, Bellini M, Padova A, Westerberg G, Maccari L (2008) Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process. J Med Chem 51:2891–2897

    Article  Google Scholar 

  • Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus CJ (2017) The atomic simulation environment—A Python Library for working with atoms. Phys Condens Matter 29:273002

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  • Lee S, Kim B, Cho H, Lee H, Lee SY, Cho ES, Kim J (2021) Computational screening of trillions of metal-organic frameworks for high-performance methane storage. ACS Appl Mater Interfaces 13:23647–23654

    Article  Google Scholar 

  • Li Y, Chen WA (2020) Comparative performance assessment of ensemble learning for credit scoring. Mathematics 8:1756

    Article  Google Scholar 

  • Li J, Pan L, Suvarna M, Wang X (2021) Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chem Eng J 426:131285

    Article  Google Scholar 

  • Li H, Nasirin C, Abed AM, Bokov DO, Thangavelu L, Marhoon HA, Rahman ML (2022) Optimization and design of machine learning computational technique for prediction of physical separation process. Arab J Chem 15(4):103680

    Article  Google Scholar 

  • Liang H, Xu M, Asselin E (2021) A study of two-dimensional single atom-supported MXenes as hydrogen evolution reaction catalysts using DFT and machine learning. ChemRxiv

  • Lot R, Pellegrini F, Shaidu Y, Küçükbenli E (2020) Panna: properties from artificial neural network architectures. Comput Phys Commun 256:107402

    Article  MathSciNet  Google Scholar 

  • Lu W, Yuan D, Zhao D, Schilling CI, Plietzsch O, Muller T, Brase S, Guenther J, Krishna R, Li Z, Zhou H-C (2010) Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem Mater 22:5964–5972

    Article  Google Scholar 

  • Lu Z, Yadav S, Singh CV (2020) Predicting aggregation energy for single atom bimetallic catalysts on clean and O* adsorbed surfaces through machine learning models. Catal Sci Technol 10:86–98

    Article  Google Scholar 

  • Majumdar S, Moosavi SM, Jablonka KM, Ongari D, Smit B (2021) Diversifying databases of metal organic frameworks for high-throughput computational screening. ACS Appl Mater Interfaces 13:61004–61014

    Article  Google Scholar 

  • Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM (2015) Applying machine learning techniques for ADME-Tox Prediction: a review. Expert Opin Drug Metab Toxicol 11:259–271

    Article  Google Scholar 

  • Mannodi-Kanakkithodi A, Toriyama MY, Sen FG, Davis MJ, Klie RF, Chan MKY, Chan MKY (2020) Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides. NPJ Comput Mater 6:134

    Article  Google Scholar 

  • Mansouri TA, Oliynyk AO, Parry M, Rizvi Z, Couper S, Lin F, Miyagi L, Sparks TD, Brgoch J (2018) Machine learning directed search for ultraincompressible, superhard materials. J Am Chem Soc 140(31):9844–9853

    Article  Google Scholar 

  • McDonagh JL, Mourik T, Mitchell JBO (2015) Predicting melting points of organic molecules: applications to aqueous solubility prediction using the general solubility equation. Mol Inform 34:715–724

    Article  Google Scholar 

  • Meftahi N, Klymenko M, Christofferson AJ, Bach U, Winkler DA, Russo SP, Russo SP (2020) Machine learning property prediction for organic photovoltaic devices. NPJ Comput Mater 6:166

    Article  Google Scholar 

  • Nakata M, Shimazaki T (2017) Pubchemqc project: a large-scale first-principles electronic structure database for data-driven chemistry. J Chem Inf Model 57:1300

    Article  Google Scholar 

  • Neese F, Wennmohs F, Becker U, Riplinger C (2020) The ORCA quantum chemistry program package. J Chem Physics 152(22):224108

    Article  Google Scholar 

  • Novikov IS, Gubaev K, Podryabinkin EV, Shapeev AV (2021) The MLIP package: moment tensor potentials with mpi and active learning. Mach Learn Sci Technol 2:025002

    Article  Google Scholar 

  • Palizhati A, Zhong W, Tran K, Back S, Ulissi ZW (2019) Toward predicting intermetallics surface properties with high-throughput DFT and convolutional neural networks. J Chem Inf Model 59:4742

    Article  Google Scholar 

  • Pardakhti M, Moharreri E, Wanik D, Suib SL, Srivastava R (2017) Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of Metal Organic Frameworks (MOFs). ACS Comb Sci 19:640–645

    Article  Google Scholar 

  • Park KS, Zheng N, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Natl Acad Sci U S A 103:10186–10191

    Article  Google Scholar 

  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L (2019) In Advances in Neural Information Processing Systems (Curran Associates, Inc., Red Hook, 32

  • Peter SC, Dhanjal JK, Malik V, Radhakrishnan N, Jayakanthan M, Sundar D (2019) Quantitative Structure-Activity Relationship (QSAR): Modeling Approaches to Biological Applications. In Encyclopedia of Bioinformatics and Computational Biology. Elsevier, 1−3, 661−676

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1

    Article  MATH  Google Scholar 

  • Radhika PR, Nair RA, Veena G (2019) A comparative study of lung cancer detection using machine learning algorithms. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), IEEE, 1–4

  • Ramsundar B, Eastman P, Walters P, Pande V, Leswing K, Wu Z (2019) Deep learning for the life sciences. O’Reilly Media, Sebastopol

  • Rao KK, Do QK, Pham K, Maiti D, Grabow LC (2020) Extendable machine learning model for the stability of single atom alloys. Top Catal 63:728–741

    Article  Google Scholar 

  • Rhone TD, Chen W, Desai S, Torrisi SB, Larson DT, Yacoby A, Kaxiras E (2020) Discovery of low-modulus Ti-Nb-Zr alloys based on machine learning and first-principles calculations. Sci Rep 10:15795

    Article  Google Scholar 

  • Rustam F, Reshi AA, Mehmood A, Ullah S, On BW, Aslam W, Choi GS (2020) COVID-19 future forecasting using supervised machine learning models. IEEE Access 8:101489–101499

    Article  Google Scholar 

  • Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD). Jom-Us 65:1501

    Article  Google Scholar 

  • Salvador CAF, Zornio BF, Miranda CR, Miranda CR (2020) Discovery of low-modulus Ti-Nb-Zr alloys based on machine learning and first-principles calculations. ACS Appl Mater Interfaces 12:56850

    Article  Google Scholar 

  • Schleder GR, Acosta CM, Fazzio A (2019) Exploring two-dimensional materials thermodynamic stability via machine learning. ACS Appl Mater Interfaces 12:20149

    Article  Google Scholar 

  • Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  Google Scholar 

  • Schulz R, Lindner B, Petridis L, Smith JC (2009) Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer. J Chem Theory Comput 5:2798–2808

    Article  Google Scholar 

  • Sendek AD, Cubuk ED, Antoniuk ER, Cheon G, Cui Y, Reed EJ, Reed EJ (2018) machine learning-assisted discovery of solid Li-Ion conducting materials. Chem Mater 31:342

    Article  Google Scholar 

  • Shah N, Engineer S, Bhagat N, Chauhan H, Shah M (2020) Research trends on the usage of machine learning and artificial intelligence in advertising. Augment Hum Res 5:1–15

    Article  Google Scholar 

  • Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC et al (2008) Special-purpose machine for molecular dynamics simulation. Commun ACM 51:91–97

    Article  Google Scholar 

  • Simon CM, Mercado R, Schnell SK, Smit B, Haranczyk M (2015) What are the best materials to separate a Xenon/Krypton mixture? Chem Mater 27:4459–4475

    Article  Google Scholar 

  • Smith JS, Isayev O, Roitberg AE (2017a) ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules. Sci Data 4:170193

    Article  Google Scholar 

  • Smith JS, Isayev O, Roitberg AE (2017b) ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 8:3192

    Article  Google Scholar 

  • Sonnenburg S, Rätsch G, Henschel S, Widmer C, Behr J, Zien A, Bona Fd, Binder A, Gehl C, Franc VJ (2010) The SHOGUN machine learning toolbox. Mach Learn Res 11:1799

    MATH  Google Scholar 

  • Sriram TV, Rao MV, Narayana GS, Kaladhar DS, Vital TPR (2013) Intelligent Parkinson disease prediction using machine learning algorithms. Int J Eng Innov Technol 3:212–215

    Google Scholar 

  • Sun X, Zheng J, Gao Y, Qiu C, Yan Y, Yao Z, Deng S, Wang J (2020) Machine- learning-accelerated screening of hydrogen evolution catalysts in MBenes materials. Appl Surf Sci 526:146522

    Article  Google Scholar 

  • Upchurch P, Gardner J, Pleiss G, Pless R, Snavely N, Bala K, Weinberger K (2017) IEEE Conference on Computer Vision Pattern Recognition (CVPR), 31, IEEE, Piscataway

  • Varoquaux G, Buitinck L, Louppe G, Grisel O, Pedregosa F, Mueller A (2015) Scikit-learn: machine learning without learning the machinery. GetMobile Mobile Comp Comm 19:29

    Article  Google Scholar 

  • Vergara JR, Estévez PA (2014) A review of feature selection methods based on mutual information. Neural Comput Appl 24:175–186

    Article  Google Scholar 

  • Wang X, Wang C, Ci S, Ma Y, Liu T, Gao L, Qian P, Ji C, Su Y (2020) Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy. J Mater Chem A 8(44):23488–23497

    Article  Google Scholar 

  • Werner H, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. Wires Comput Mol Sci 2:242

    Article  Google Scholar 

  • Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ (2012) Large-scale screening of hypothetical metal-organic frameworks. Nat Chem 4:83

    Article  Google Scholar 

  • Witten IH, Frank E (2002) Data mining: practical machine learning tools and techniques with java implementations. ACM SIGMOD Rec 31:76

    Article  Google Scholar 

  • Wu T, Wang J (2019) Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy 66:104070

    Article  Google Scholar 

  • Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9:513

    Article  Google Scholar 

  • Wu C, Brooks D, Chen K, Chen D, Choudhury S, Dukhan M, Hazelwood K, Isaac E, Jia Y, Jia B et al (2019) Machine Learning at Facebook: Understanding Inference at the Edge. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), IEEE, 331−344

  • Xiouras C, Cameli F, Quillo GL, Kavousanakis ME, Vlachos DG, Stefanidis GD (2022) Applications of artificial intelligence and machine learning algorithms to crystallization. Chem Rev 122(15):13006–13042

    Article  Google Scholar 

  • Yan Y, Shi Z, Li H, Li L, Yang X, Li S, Liang H, Qiao Z (2022) Machine learning and in-silico screening of metal–organic frameworks for O2/N2 dynamic adsorption and separation. Chem Eng J 427:131604

    Article  Google Scholar 

  • Yang Z, Gao W, Jiang Q (2020) A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors. J Mater Chem A 8:17507–17515

    Article  Google Scholar 

  • Yang J, Tao L, He J, McCutcheon JR, Li Y (2022) Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Sci Adv 8(29):9545

    Article  Google Scholar 

  • Yao K, Herr JE, Toth DW, Mckintyre R, Parkhill J (2018) The Tensormol-0.1 model chemistry: a neural network augmented with long-range physics. Chem Sci 9:2261

    Article  Google Scholar 

  • Ye W, Chen C, Wang Z, Chu I, Ong SP (2018) Deep neural networks for accurate predictions of crystal stability. Nat Commun 9:3800

    Article  Google Scholar 

  • Zhang J, Hu P, Wang H (2020) Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction. J Phys Chem C 124(19):10483–10494

    Article  Google Scholar 

  • Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Science and Technology, Government of India, under the grant number SPO/DST/CHE/2021535. BMA would like to thank SERB for the financial support under the grant number PDF/2021/000487.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant K. Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, P., Roshini, D., Daoo, V. et al. Integrating Machine Learning and Molecular Simulation for Material Design and Discovery. Trans Indian Natl. Acad. Eng. 8, 325–340 (2023). https://doi.org/10.1007/s41403-023-00412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41403-023-00412-z

Keywords

Navigation