Skip to main content
Log in

Advancement and Challenges for Schottkey Barrier MIS/SIS Solar Cells: A Review

  • Review Article
  • Published:
Transactions of the Indian National Academy of Engineering Aims and scope Submit manuscript

Abstract

The conventional solar cell fabrication requires a very high thermal budget. SIS (semiconductor–insulator–semiconductor)/MIS (metal–insulator–semiconductor) Schottkey barrier solar cell technology cut down the thermal budget with much less energy dissipation to fabricate. Schottky barrier solar cells are a promising alternative to conventionally fabricated solar cells. Diffusion process used in conventional fabrication is high temperature and sophisticated process with high thermal budget. With the motive to overcome this problem, Schottky barrier solar cells were fabricated with low temperature and less cost back in 1970s. From that time investigation is going on suitable material, optimum structure of Schottky barrier cells. In this paper, different aspect of Schottky barrier solar cells prior to performance enhancement are discussed with significant research outcome from the researchers in chronological order. From the studies, it is found that work function difference between base semiconductor and Metal/TCO (transparent conducting oxides) layer, Interfacial layer thickness are the key parameters of these cells. With advanced technology and materials like BSF (back surface field). Surface texturing, carrier selective contacts, advanced deposition process, etc. cell performance can be enhanced further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Available with authors.

Code Availability

Not applicable.

References

  • Adeeb N, Kretsu IV, Sherban DA, Simashkevich AV, Sushkevich KD (1987) Spray-deposited ITO-CdTe solar cells. Solar Energy Mater 15:9–19

    Google Scholar 

  • Agarwal DC, Chauhan RS, Kumar A, Kabiraj D, Singh F, Khan SA, Avasthi DK, Pivin JC, Kumar M, Ghatak J, Satyam PV (2006) Synthesis and characterization of ZnO thin film grown by electron beam evaporation. J Appl Phys 99:123105

    Google Scholar 

  • Alam MJ, Cameron DC (2002) Investigation of annealing effects on sol-gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films 420–421:76–82

    Google Scholar 

  • Altındal Ş, Tataroğlu A, Dökme İ (2005) Density of interface states, excess capacitance and series resistance in the metal-insulator-semiconductor (MIS) solar cells. Sol Energy Mater Sol Cells 85:345–358

    Google Scholar 

  • Anderson WA, Delahoy AE (1972) Schottky barrier diodes for solar energy conversion. Proc IEEE 60:1457–1458

    Google Scholar 

  • Anderson WA, Delahoy AE, Milano RA (1976) Thin metal films as applied to Schottky solar cells: optical studies. Appl Opt 15(6):1621–1625

    Google Scholar 

  • Anderson TH, Mackay TG, Lakhtakia A (2017) Enhanced efficiency of Schottky-barrier solar cell with periodically nonhomogeneous indium gallium nitride layer. J Photon Energy 7(1):014502

    Google Scholar 

  • Aouaj MA, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M (2009) Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater Res Bull 44:1458–1461

    Google Scholar 

  • Arafa M, Said E-SS (2019) A different visions for uninterruptible load using hybrid solar-grid energy. Int J Power Electron Drive Syst 10:381

    Google Scholar 

  • Ashok S, Sharma PP, Fonash SJ (1980) Spray-deposited ITO-silicon SIS heterojunction solar cells. IEEE Trans Electron Devices ED-21(4):725–730

    Google Scholar 

  • Ayouchi R, Martin F, Leinen D, Ramos-Barrado JR (2003) Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. J Cryst Growth 247:497–504

    Google Scholar 

  • Bethge O, Nobile M, Abermann S, Glaser M, Bertagnolli E (2013) ALD grown bilayer junction of ZnO: Al and tunnel oxide barrier for SIS solar cell. Sol Energy Mater Sol Cells 117:178–182

    Google Scholar 

  • Bhardwaj A, Gupta BK, Raza A, Sharma AK, Agnihotri OP (1981) Fluorine-doped SnO2 films for solar cell application. Solar Cells 5:39–49

    Google Scholar 

  • Bhardwaj A, Kalonia KS, Raza A, Sharma AK, Gupta BK, Agnithotri OP (1982) Spray-deposited SnO2/n-Si(polycrystalline) solar cells. Solar Cells 5:305–311

    Google Scholar 

  • Böhmer E, Siebke F, Rech B, Beneking C, Wagner H (1996) More insights into the ZnO/a-SiC:H(B) interface—an improved TCO/p contact. MRS Proc 426:519

    Google Scholar 

  • Bruk L, Fedorov V, Sherban D, Simashkevich A, Usatii I, Bobeic E, Morvillo P (2009) Isotype bifacial silicon solar cells obtained by ITO spray pyrolysis. Mater Sci Eng B 159–160:282–285

    Google Scholar 

  • Card HC, Rhoderick EH (1971) Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D: Appl Phys 4:1589–1601

    Google Scholar 

  • Chatelon JP, Terrier C, Bernstein E, Berjoan R, Roger JA (1994) Morphology of SnO2 thin films obtaibed by the sol-gel technique. Thin Solid Films 247:162–168

    Google Scholar 

  • Chebotareva AB, Untila GG, Kost TN, Jorgensen S, Ulyashin AG (2007) ITO deposited by pyrosol for photovoltaic applications. Thin Solid Films 515:8505–8510

    Google Scholar 

  • Cheek G (1980) MIS and SIS solar cells on polycrystalline silicon. Solar Cells 1:405–420

    Google Scholar 

  • Cheek G, Inoue N, Goodnick S, Genis A, Wilmsen C, DuBow JB (1978) Fabrication and characterization of indium tin oxide (ITO)/polycrystalline silicon solar cells. Appl Phys Lett 33:643

    Google Scholar 

  • Chen SM, Gao M, Fang XH, Ma ZQ (2015) Modifications and multiple roles of graphene film in SIS structural solar cells. Sol Energy 122:658–666

    Google Scholar 

  • Cheng H-E, Tian D-C, Huang K-C (2012) Properties of SnO2 films grown by atomic layer deposition. Procedia Eng 36:510–515

    Google Scholar 

  • Chung S-L, Wang C-M (2012) Solution combustion synthesis of TiO2 and its use for fabrication of photoelectrode for dye-sensitized solar cell. J Mater Sci Technol 28:713–722

    Google Scholar 

  • Courel M, Pulgarín-Agudelo FA, Andrade-Arvizu JA, Vigil-Galán O (2016) Open-circuit voltage enhancement in CdS/Cu2ZnSnSe4-based thin film solar cells: a metal-insulator-semiconductor (MIS) performance. Sol Energy Mater Sol Cells 149:204–212

    Google Scholar 

  • Dasgupta NP, Neubert S, Lee W, Trejo O, Lee J-R, Prinz FB (2010) Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity. Chem Mater 22:4769–4775

    Google Scholar 

  • Dasgupta K, Ray S, Mondal A, Gangopadhyay U (2017) Review on different front surface modification of both n+-p-p+ and p+-n-n+ C- Si solar cell. Mater Today Proc 4(14):12698–12707

    Google Scholar 

  • Dasgupta K, Mondal A, Ray S et al (2021a) Mathematical modelling of a novel hetero-junction dual SIS ZnO-Si-SnO solar cell. SILICON. https://doi.org/10.1007/s12633-021-01090-8

    Article  Google Scholar 

  • Dasgupta K, Mondal A, Ray S et al (2021b) Mathematical modelling of a novel heterojunction SIS front surface and interdigitated back-contact solar cell. J Comput Electron. https://doi.org/10.1007/s10825-021-01735-2

    Article  Google Scholar 

  • de Cesare G, Caputo D, Tucci M (2012) Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures. IEEE Electron Device Lett 33(3):327–329

    Google Scholar 

  • de Graaff HC, de Groot JG (1979) The SIS tunnel emitter: a theory for emitters with thin interface layers. IEEE Trans Electron Devices 26(11):1771–1776

    Google Scholar 

  • Ding K, Zhang X, Xia F, Wang R, Kuang Y, Duhm S, Jie J, Zhang X (2017) Surface charge transfer doping induced inversion layer for high-performance graphene/silicon heterojunction solar cells. J Mater Chem A 5:285–291

    Google Scholar 

  • Du HW, Yang J, Li YH, Xu F, Xu J, Ma ZQ (2015a) Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering. Appl Phys Lett 106:093508

    Google Scholar 

  • Du HW, Yang J, Li Y, Gao M, Chen SM, Yu ZS, Xu F, Ma ZQ (2015b) Low temperature characteristic of ITO/SiOx/c-Si heterojunction solar cell. J Phys D Appl Phys 48:355101

    Google Scholar 

  • Du HW, Yang J, Gao M, Li Y, Wan YZ, Xu F, Ma ZQ (2017) The bifunctional tin-doped indium oxide as hole-selective contact and collector in silicon heterojunction solar cell with a stable intermediate oxide layer. Sol Energy 155:963–970

    Google Scholar 

  • Elam JW, Baker DA, Martinson ABF, Pellin MJ, Hupp JT (2008) Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors. J Phys Chem C 112:1938–1945

    Google Scholar 

  • Ellmer K, Klein A (2008) ZnO and its applications. In: Ellmer K, Klein A, Rech B (eds) Transparent conductive zinc oxide springer series in materials science, vol 104. Springer

    Google Scholar 

  • Ergen O, Gibb A, Vazquez-Mena O, Regan WR, Zettl A (2015) Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer. Appl Phys Lett 106:103904

    Google Scholar 

  • Fallahazad P, Naderi N, Eshraghi MJ et al (2018) Combination of surface texturing and nanostructure coating for reduction of light reflection in ZnO/Si heterojunction thin film solar cell. J Mater Sci Mater Electron 29:6289–6296

    Google Scholar 

  • Fang H-W, Hsieh T-E, Juang J-Y (2013) Influences of SiOx layer thickness on the characteristics of In-Zn-O/SiOx/n-Si hetero-junction structure solar cells. Surf Coat Technol 231:214–218

    Google Scholar 

  • Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H (2012) Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale 4:2130–2133

    Google Scholar 

  • Fetterman HR, Clifton BJ, Tannenwald PE, Parker CD (1974) Submillimeter detection and mixing using Schottky diodes. Appl Phys Lett 24:70–72

    Google Scholar 

  • Fonash SJ (1976) Outline and comparison of the possible effects present in a metal–thin–film–insulator–semiconductor. J Appl Phys 47:3597

    Google Scholar 

  • Fritts CE (1883) On a new form of selenium cell, and some electrical discoveries made by its use. Am J Sci 26:465–472

    Google Scholar 

  • Füchsel K, Bingel A, Kaiser N, Tünnermann A (2011) Transparent conductive oxides for nano-SIS solar cells. Proc. SPIE 8065

  • Gaskell JM, Sheel DW (2012) Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition. Thin Solid Films 520:4110–4113

    Google Scholar 

  • Geim AK, Novoselov KS (2009) The rise of graphene. Nanoscience and Technology; Macmillan Publishers Ltd, UK, pp 11–19

    Google Scholar 

  • Ghosh AK, Fishman C, Feng T (1978) SnO2/Si solar cells—heterostructure or Schottky barrier or MIS type device. J Appl Phys 49:3490

    Google Scholar 

  • Green MA (1975) Enhancement of Schottky solar cell efficiency above its semiempirical limit. Appl Phys Lett 27:287

    Google Scholar 

  • Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt: Res Appl 17:183–189

    Google Scholar 

  • Green MA, Shewchun J (1973) Minority carrier effects upon the small signal and steady-state properties of Schottky diodes. Solid-State Electron 16:1141–1150

    Google Scholar 

  • Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2020) Solar cell efficiency tables (version 56). Prog Photovolt Res Appl 28:629–638

    Google Scholar 

  • Hu J, Gordon RG (1992) Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J Appl Phys 71:880–890

    Google Scholar 

  • Iwantono I, Anggelina F, Saad SKM, Rahman MYA, Umar AA (2017) Influence of Ag ion adsorption on the photoactivity of ZnO nanorods for dye-sensitized solar cell application. Mater Express 7(4):312–318

    Google Scholar 

  • Jia G, Eisenhawer B, Dellith J, Falk F, Thogersen A, Lyashin U (2013) Multiple core−shell silicon nanowire-based heterojunction solar cells. J Phys Chem C 117:1091–1096

    Google Scholar 

  • Jiao K, Wang X, Wang Y, Chen Y (2014) Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J Mater Chem C 2:7715–7721

    Google Scholar 

  • Kaya S, Yilmaz E (2019) Effects of interfacial layer on the electrical properties of n-ZnO/p-Si heterojunction diodes between 260 and 340 K. J Mater Sci Mater Electron 30:12170–12179

    Google Scholar 

  • Khan AF, Mehmood M, Rana AM, Bhatti MT (2009) Effect of annealing on electrical resistivity of RF-magnetron sputtered nanostructured SnO2 thin films. Appl Surf Sci 255:8562–8565

    Google Scholar 

  • Kim KH, Park KC, Ma DY (1997) Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 81:7764–7772

    Google Scholar 

  • Kim D, Kang H, Kim J-M, Kim H (2011) The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD. Appl Surf Sci 257:3776–3779

    Google Scholar 

  • Kumar V, Singh F, Ntwaeaborwa OM, Swart HC (2013) Effect of Br+6 ions on the structural, morphological and luminescent properties of ZnO/Si thin films. Appl Surf Sci 279:472–478

    Google Scholar 

  • Li XM, Zhu HW, Wang KL, Wei JQ, Li CY, Jia Y, Li Z, Li X, Wu DH (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748

    Google Scholar 

  • Li Y, Han BC, Gao M, Wan YZ, Yang J, Du HW, Ma ZQ (2017) A concise way to estimate the average density of interface states in an ITO-SiOx/n-Si heterojunction solar cell. Appl Surf Sci 416:432–438

    Google Scholar 

  • Liu CY, Kortshagen UR (2010) A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals. Nanoscale Res Lett 5:1253–1256

    Google Scholar 

  • Liu X, Zhang XW, Meng JH, Yin ZG, Zhang LQ, Wang HL, Wu JL (2015) High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl Phys Lett 106:233901

    Google Scholar 

  • Lu J, Sundqvist J, Ottosson M, Tarre A, Rosental A, Aarik J, Hårsta A (2004) Microstructure characterisation of ALD-grown epitaxial SnO2 thin films. J Cryst Growth 260:191–200

    Google Scholar 

  • Lu YM, Jiang J, Becker M, Kramm B, Chen L, Polity A, He YB, Klar PJ, Meyer BK (2015) Polycrystalline SnO2 films grown by chemical vapor deposition on quartz glass. Vacuum 122:347–352

    Google Scholar 

  • Ma ZQ, Du HW, Yang J, Gao M, Chen SM, Wan YZ (2016) Realization of both high efficiency and quantum tunneling in QM-SIS solar cells. Mater Today Proc 3(2):454–458

    Google Scholar 

  • Maifi S, Lagha K, Boumedine F, Belkaid MS (2009) M-I-S-S structure based silicon and TCO. In: 2009 4th international conference on design & technology of integrated systems in nanoscal era, pp 140–143

  • Malik O, De la Hidalga-W FJ, Zúñiga-I C, Ruiz-T G (2008) Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: results and perspectives. J Non-Cryst Solids 354:2472–2477

    Google Scholar 

  • Mandal L, Askari SSA, Kumar M, Das MK (2020) Band offset engineering for p-SnO/n-mc-Si heterojunction solar cell. Appl Phys Lett 116:234106

    Google Scholar 

  • Manouni AE, Manjón FJ, Mollar M, Marí B, Gómez R, López MC, Ramos-Barrado JR (2006) Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis. Superlattices Microstruct 39:185–192

    Google Scholar 

  • Marikkannan M, Vishnukanthan V, Vijayshankar A, Mayandi J, Pearce JM (2015) A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications. AIP Adv 5:027122

    Google Scholar 

  • Matsubara S, Narui H, Tsuchiya N, Takahashi NS, Kurita S (1989) Effect of InGaAsP surface treatment for indium-tin-oxide/InGaAsP/GaAs solar cells. J Appl Phys 66:3337–3341

    Google Scholar 

  • Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard F (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750

    Google Scholar 

  • Minami T, Nanto H, Takata S (1988) Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates. Jpn J Appl Phys 27:L287–L289

    Google Scholar 

  • Muiva CM, Sathiaraj TS, Maabong K (2011) Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram Int 37:555–560

    Google Scholar 

  • Noor FA, Oktasendra F, Sustini E, Khairurrijal K (2018) The effects of insulator thickness and substrate doping density on the performance of ZnO/SiO2/n-Si solar cells. Mater Technol 33(14):865–871

    Google Scholar 

  • Nsgatomo T, Amano Y, Omoto O (1982) Evaluation of SnO2/SiOXln-Si solar cells. Electron Commun Jpn 654(5):106–113

    Google Scholar 

  • Oener SZ, van de Groep J, Macco B, Bronsveld PCP, Kessels WMM, Polman A, Garnett EC (2016) Metal-insulator-semiconductor nanowire network solar cells. Nano Lett 16:3689–3695

    Google Scholar 

  • Pauwels HJ, de Visschere P (1978) Influence of an insulating layer on the efficiency of a semiconductor-insulator-semiconductor (SIS) heterojunction solar cell. Solid-State Electron 21:693–698

    Google Scholar 

  • Saarenpää H, Niemi T, Tukiainen A, Lemmetyinen H, Tkachenko N (2010) Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Sol Energy Mater Sol Cells 94:1379–1383

    Google Scholar 

  • Saboor A, Shah SM, Hussain H (2019) Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Mater Sci Semicond Process 93:215–225

    Google Scholar 

  • Saha NR, Chaudhuri DR, Basu PK (1983) Barrier height enhancement in semiconductor insulator-semiconductor solar cells due to surface states and insulator charges. Solar Cells 8:397–401

    Google Scholar 

  • Saim HB, Campbell DS (1987) Properties of indium-tin-oxide (ITO)/silicon heterojunction solar cells by thick-film techniques. Solar Energy Mater 15:249–260

    Google Scholar 

  • Schuler T, Aegerter MA (1999) Optical, electrical and structural properties of sol gel ZnO: Al coatings. Thin Solid Films 351:125–131

    Google Scholar 

  • Sen K, Srivastava RS (1981) A new structure for a semiconductor-insulator-semiconductor solar cell. J Appl Phys 52:7309–7312

    Google Scholar 

  • Sen K, Srivastava RS (1982) SIS solar cell theory and calculations. Phys Stat Sol A 69:413–418

    Google Scholar 

  • Shaoqiang C, Jian Z, Xiao F, Xiaohua W, Laiqiang L, Yanling S, Qingsong X, Chang W, Jianzhong Z, Ziqiang Z (2005) Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol gel technique. Appl Surf Sci 241:384–391

    Google Scholar 

  • Sharma PP et al (1980) Si and GaAs SIS heterostructure solar cells using spray-deposited ITO. Jpn J Appl Phys 19:551

    Google Scholar 

  • Sharma N, Arif M, Monga S, Shkir M, Mishra YK, Singh A (2020) Investigation of bandgap alteration in graphene oxide with different reduction routes. Appl Surf Sci 513:145396

    Google Scholar 

  • Shewchun J, Singh R, Green MA (1977) Theory of metal insulator semiconductor solar cells. J Appl Phys 48:765

    Google Scholar 

  • Shewchun J, Dubow J, Myszkowski A, Singh R (1978) The operation of the semiconductor-insulator-semiconductor (SIS) solar cell: theory. J Appl Phys 49:855–864

    Google Scholar 

  • Shewchun J, Burk D, Singh R, Spitzer M, Dubow J (1979a) The semiconductor-insulator-semiconductor (indium tin oxide on silicon) solar cell: characteristics and loss mechanisms. J Appl Phys 50:6524–6533

    Google Scholar 

  • Shewchun J, Dubow J, Wilmsen CW, Singh R, Burk D, Wager JF (1979b) The operation of the semiconductor-insulator-semiconductor solar cell: experiment. J Appl Phys 50:2832–2839

    Google Scholar 

  • Shewchun J, Burk D, Spitzer MB (1980) MIS and SIS solar cells. IEEE Trans Electron Devices 27(4):705–716

    Google Scholar 

  • Shih I, Jatar S, Champness CH, Liria N (1982) A semiconductor-insulator-semiconductor CdO·SiO2·Si solar cell. Solar Cells 7:327–330

    Google Scholar 

  • Shimizu M, Shiosaki T, Kawabata A (1982) Growth of c-axis oriented ZnO thin films with high deposition rate on silicon by CVD method. J Cryst Growth 57:94–100

    Google Scholar 

  • Simashkevich A, Serban D, Bruc L, Coval A, Fedorov V, Bobeico E, Usatii I (2004) Spray deposited ITO-nSi solar cells with enlarged area. Mold J Phys Sci 3(3–4):334–339

    Google Scholar 

  • Singh R, Rajkanan K, Brodie DE, Morgan JH (1980) Optimization of oxide-semiconductor/base-semiconductor solar cells. IEEE Trans Electron Devices 27(4):656–662

    Google Scholar 

  • Smit S, Garcia-Alonso D, Bordihn S, Hanssen MS, Kessels WMM (2014) Metal-oxide-based hole selective tunneling contacts for crystalline silicon solar cells. Sol Energy Mater Sol Cells 120:376–382

    Google Scholar 

  • Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene−silicon Schottky barrier solar cells. Nano Lett 15:2104–2110

    Google Scholar 

  • Spitzer M, Shewchun J, Burk D (1980) The operation of the semiconductor-insulator-semiconductor solar cell: barrier height lowering through interface states. J Appl Phys 51:6399–6404

    Google Scholar 

  • Srivastava S, Swami NK, Srivastava GP (1980) Efficiency of Schottky barrier solar cell. Phys Stat Sol A 68:343

    Google Scholar 

  • Tomar MS, Garcia FJ (1982) A ZnO/p-CuInSe2 thin film solar cell prepared entirely by spray pyrolysis. Thin Solid Films 90:419–423

    Google Scholar 

  • Tong C, Yun J, Song H, Gan Q, Anderson WA (2014) Plasmonic-enhanced Si Schottky barrier solar cells. Sol Energy Mater Sol Cells 120:591–595

    Google Scholar 

  • Um J, Roh B-M, Kim S, Kim SE (2013) Effect of radio frequency power on the properties of p-type SnO deposited via sputtering. Mater Sci Semicond Process 16:1679–1683

    Google Scholar 

  • Untila GG, Kost TN, Chebotareva AB, Kireeva ED (2015) Contact resistance of indium tin oxide and fluorine-doped indium oxide films grown by ultrasonic spray pyrolysis to diffusion layers in silicon solar cells. Sol Energy Mater Sol Cells 137:26–33

    Google Scholar 

  • Untila GG, Kost TN, Chebotareva AB (2016) Bifacial 8.3%/5.4% front/rear efficiency ZnO:Al/n-Si heterojunction solar cell produced by spray pyrolysis. Sol Energy 127:184–197

    Google Scholar 

  • Untila GG, Kost TN, Chebotareva AB (2019) Fluorine-doped ZnO (FZO) films produced by corona-discharge-assisted ultrasonic spray pyrolysis and hydrogenation as electron-selective contacts in FZO/SiOx/p-Si heterojunction crystalline silicon solar cells with 11.7% efficiency. Sol Energy 179:352–362

    Google Scholar 

  • Untila GG, Kost TN, Chebotareva AB (2020) ITO/SiOx/n-Si heterojunction solar cell with bifacial 16.6%/14.6% front/rear efficiency produced by ultrasonic spray pyrolysis: effect of conditions of SiOx growth by wet-chemical oxidation. Sol Energy 204:395–405

    Google Scholar 

  • Van Helen P, Mertens RP, Van Overstraeten RJ, Thomas RE (1978) New TiO,-MIS and SiO2-MIS silicon solar cells. IEEE Trans Electron Devices ED25(5):507–511

    Google Scholar 

  • Vishwakarma SR, Rahmatullah R, Prasad HC (1991) Fabrication of SnO2:As/SiO2/n-Si (textured) (semiconductor/insulator/semiconductor) solar cells by chemical vapor deposition. J Appl Phys 70:7474–7477

    Google Scholar 

  • Vishwakarma SR, Rahmatullah R, Prasad HC (1993a) Low cost SnO2:P/SiO2/n-Si (textured) heterojunction solar cells. J Phys D Appl Phys 26:959–962

    Google Scholar 

  • Vishwakarma SR, Rahmatullah R, Prasad HC (1993b) Heterojunction solar cell prepared by chemical vapour deposition of doped SnO2 on textured silicon. Solid State Commun 85:1055–1059

    Google Scholar 

  • Vishwakarma SR, Rahmatullah R, Prasad HC (1993c) Preparation of heterojunction solar cell. Solid-State Electron 36:1345–1348

    Google Scholar 

  • Wenas WW, Riyadi S (2006) Carrier transport in high-efficiency ZnO/SiO2/Si solar cells. Sol Energy Mater Sol Cells 90:3261–3267

    Google Scholar 

  • Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K (2018) Interfacial engineering in graphene bandgap. Chem Soc Rev 47:3059–3099

    Google Scholar 

  • Young DL, Nemeth W, Grover S, Norman A, Lee BG, Stradins P (2014) Carrier-selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC), pp. 1–5

  • Zhang M, Gao X, Barra A, Chang P, Huang L, Hellwarth R, Lu JG (2015) Core-shell structured Si/ZnO photovoltaics. Mater Lett 140:59–63

    Google Scholar 

Download references

Acknowledgements

We acknowledge Meghnad Saha Institute of Technology for providing us the laboratory and library facilities.

Funding

No institutional funding was used.

Author information

Authors and Affiliations

Authors

Contributions

KD: writing the manuscript, theoretical analysis, research; KC: writing the manuscript, research; UG: ideation, supervising, data analysis; AM: supervising, manuscript correction; SR: technical support, data analysis.

Corresponding author

Correspondence to Kaustuv Dasgupta.

Ethics declarations

Conflict of Interest

The study was not funded by any funding organization. The authors declare that they have no conflicts of interest.

Consent to Participate

This article does not contain any studies involving human participants performed by any of the authors.

Consent for Publication

We give our consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in the Silicon, Springer. Therefore, anyone can read material published in the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, K., Chowdhury, K., Mondal, A. et al. Advancement and Challenges for Schottkey Barrier MIS/SIS Solar Cells: A Review. Trans Indian Natl. Acad. Eng. 7, 13–28 (2022). https://doi.org/10.1007/s41403-021-00263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41403-021-00263-6

Keywords

Navigation