Abstract
The conventional solar cell fabrication requires a very high thermal budget. SIS (semiconductor–insulator–semiconductor)/MIS (metal–insulator–semiconductor) Schottkey barrier solar cell technology cut down the thermal budget with much less energy dissipation to fabricate. Schottky barrier solar cells are a promising alternative to conventionally fabricated solar cells. Diffusion process used in conventional fabrication is high temperature and sophisticated process with high thermal budget. With the motive to overcome this problem, Schottky barrier solar cells were fabricated with low temperature and less cost back in 1970s. From that time investigation is going on suitable material, optimum structure of Schottky barrier cells. In this paper, different aspect of Schottky barrier solar cells prior to performance enhancement are discussed with significant research outcome from the researchers in chronological order. From the studies, it is found that work function difference between base semiconductor and Metal/TCO (transparent conducting oxides) layer, Interfacial layer thickness are the key parameters of these cells. With advanced technology and materials like BSF (back surface field). Surface texturing, carrier selective contacts, advanced deposition process, etc. cell performance can be enhanced further.
Similar content being viewed by others
Data Availability
Available with authors.
Code Availability
Not applicable.
References
Adeeb N, Kretsu IV, Sherban DA, Simashkevich AV, Sushkevich KD (1987) Spray-deposited ITO-CdTe solar cells. Solar Energy Mater 15:9–19
Agarwal DC, Chauhan RS, Kumar A, Kabiraj D, Singh F, Khan SA, Avasthi DK, Pivin JC, Kumar M, Ghatak J, Satyam PV (2006) Synthesis and characterization of ZnO thin film grown by electron beam evaporation. J Appl Phys 99:123105
Alam MJ, Cameron DC (2002) Investigation of annealing effects on sol-gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films 420–421:76–82
Altındal Ş, Tataroğlu A, Dökme İ (2005) Density of interface states, excess capacitance and series resistance in the metal-insulator-semiconductor (MIS) solar cells. Sol Energy Mater Sol Cells 85:345–358
Anderson WA, Delahoy AE (1972) Schottky barrier diodes for solar energy conversion. Proc IEEE 60:1457–1458
Anderson WA, Delahoy AE, Milano RA (1976) Thin metal films as applied to Schottky solar cells: optical studies. Appl Opt 15(6):1621–1625
Anderson TH, Mackay TG, Lakhtakia A (2017) Enhanced efficiency of Schottky-barrier solar cell with periodically nonhomogeneous indium gallium nitride layer. J Photon Energy 7(1):014502
Aouaj MA, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M (2009) Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater Res Bull 44:1458–1461
Arafa M, Said E-SS (2019) A different visions for uninterruptible load using hybrid solar-grid energy. Int J Power Electron Drive Syst 10:381
Ashok S, Sharma PP, Fonash SJ (1980) Spray-deposited ITO-silicon SIS heterojunction solar cells. IEEE Trans Electron Devices ED-21(4):725–730
Ayouchi R, Martin F, Leinen D, Ramos-Barrado JR (2003) Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. J Cryst Growth 247:497–504
Bethge O, Nobile M, Abermann S, Glaser M, Bertagnolli E (2013) ALD grown bilayer junction of ZnO: Al and tunnel oxide barrier for SIS solar cell. Sol Energy Mater Sol Cells 117:178–182
Bhardwaj A, Gupta BK, Raza A, Sharma AK, Agnihotri OP (1981) Fluorine-doped SnO2 films for solar cell application. Solar Cells 5:39–49
Bhardwaj A, Kalonia KS, Raza A, Sharma AK, Gupta BK, Agnithotri OP (1982) Spray-deposited SnO2/n-Si(polycrystalline) solar cells. Solar Cells 5:305–311
Böhmer E, Siebke F, Rech B, Beneking C, Wagner H (1996) More insights into the ZnO/a-SiC:H(B) interface—an improved TCO/p contact. MRS Proc 426:519
Bruk L, Fedorov V, Sherban D, Simashkevich A, Usatii I, Bobeic E, Morvillo P (2009) Isotype bifacial silicon solar cells obtained by ITO spray pyrolysis. Mater Sci Eng B 159–160:282–285
Card HC, Rhoderick EH (1971) Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D: Appl Phys 4:1589–1601
Chatelon JP, Terrier C, Bernstein E, Berjoan R, Roger JA (1994) Morphology of SnO2 thin films obtaibed by the sol-gel technique. Thin Solid Films 247:162–168
Chebotareva AB, Untila GG, Kost TN, Jorgensen S, Ulyashin AG (2007) ITO deposited by pyrosol for photovoltaic applications. Thin Solid Films 515:8505–8510
Cheek G (1980) MIS and SIS solar cells on polycrystalline silicon. Solar Cells 1:405–420
Cheek G, Inoue N, Goodnick S, Genis A, Wilmsen C, DuBow JB (1978) Fabrication and characterization of indium tin oxide (ITO)/polycrystalline silicon solar cells. Appl Phys Lett 33:643
Chen SM, Gao M, Fang XH, Ma ZQ (2015) Modifications and multiple roles of graphene film in SIS structural solar cells. Sol Energy 122:658–666
Cheng H-E, Tian D-C, Huang K-C (2012) Properties of SnO2 films grown by atomic layer deposition. Procedia Eng 36:510–515
Chung S-L, Wang C-M (2012) Solution combustion synthesis of TiO2 and its use for fabrication of photoelectrode for dye-sensitized solar cell. J Mater Sci Technol 28:713–722
Courel M, Pulgarín-Agudelo FA, Andrade-Arvizu JA, Vigil-Galán O (2016) Open-circuit voltage enhancement in CdS/Cu2ZnSnSe4-based thin film solar cells: a metal-insulator-semiconductor (MIS) performance. Sol Energy Mater Sol Cells 149:204–212
Dasgupta NP, Neubert S, Lee W, Trejo O, Lee J-R, Prinz FB (2010) Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity. Chem Mater 22:4769–4775
Dasgupta K, Ray S, Mondal A, Gangopadhyay U (2017) Review on different front surface modification of both n+-p-p+ and p+-n-n+ C- Si solar cell. Mater Today Proc 4(14):12698–12707
Dasgupta K, Mondal A, Ray S et al (2021a) Mathematical modelling of a novel hetero-junction dual SIS ZnO-Si-SnO solar cell. SILICON. https://doi.org/10.1007/s12633-021-01090-8
Dasgupta K, Mondal A, Ray S et al (2021b) Mathematical modelling of a novel heterojunction SIS front surface and interdigitated back-contact solar cell. J Comput Electron. https://doi.org/10.1007/s10825-021-01735-2
de Cesare G, Caputo D, Tucci M (2012) Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures. IEEE Electron Device Lett 33(3):327–329
de Graaff HC, de Groot JG (1979) The SIS tunnel emitter: a theory for emitters with thin interface layers. IEEE Trans Electron Devices 26(11):1771–1776
Ding K, Zhang X, Xia F, Wang R, Kuang Y, Duhm S, Jie J, Zhang X (2017) Surface charge transfer doping induced inversion layer for high-performance graphene/silicon heterojunction solar cells. J Mater Chem A 5:285–291
Du HW, Yang J, Li YH, Xu F, Xu J, Ma ZQ (2015a) Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering. Appl Phys Lett 106:093508
Du HW, Yang J, Li Y, Gao M, Chen SM, Yu ZS, Xu F, Ma ZQ (2015b) Low temperature characteristic of ITO/SiOx/c-Si heterojunction solar cell. J Phys D Appl Phys 48:355101
Du HW, Yang J, Gao M, Li Y, Wan YZ, Xu F, Ma ZQ (2017) The bifunctional tin-doped indium oxide as hole-selective contact and collector in silicon heterojunction solar cell with a stable intermediate oxide layer. Sol Energy 155:963–970
Elam JW, Baker DA, Martinson ABF, Pellin MJ, Hupp JT (2008) Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors. J Phys Chem C 112:1938–1945
Ellmer K, Klein A (2008) ZnO and its applications. In: Ellmer K, Klein A, Rech B (eds) Transparent conductive zinc oxide springer series in materials science, vol 104. Springer
Ergen O, Gibb A, Vazquez-Mena O, Regan WR, Zettl A (2015) Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer. Appl Phys Lett 106:103904
Fallahazad P, Naderi N, Eshraghi MJ et al (2018) Combination of surface texturing and nanostructure coating for reduction of light reflection in ZnO/Si heterojunction thin film solar cell. J Mater Sci Mater Electron 29:6289–6296
Fang H-W, Hsieh T-E, Juang J-Y (2013) Influences of SiOx layer thickness on the characteristics of In-Zn-O/SiOx/n-Si hetero-junction structure solar cells. Surf Coat Technol 231:214–218
Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H (2012) Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale 4:2130–2133
Fetterman HR, Clifton BJ, Tannenwald PE, Parker CD (1974) Submillimeter detection and mixing using Schottky diodes. Appl Phys Lett 24:70–72
Fonash SJ (1976) Outline and comparison of the possible effects present in a metal–thin–film–insulator–semiconductor. J Appl Phys 47:3597
Fritts CE (1883) On a new form of selenium cell, and some electrical discoveries made by its use. Am J Sci 26:465–472
Füchsel K, Bingel A, Kaiser N, Tünnermann A (2011) Transparent conductive oxides for nano-SIS solar cells. Proc. SPIE 8065
Gaskell JM, Sheel DW (2012) Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition. Thin Solid Films 520:4110–4113
Geim AK, Novoselov KS (2009) The rise of graphene. Nanoscience and Technology; Macmillan Publishers Ltd, UK, pp 11–19
Ghosh AK, Fishman C, Feng T (1978) SnO2/Si solar cells—heterostructure or Schottky barrier or MIS type device. J Appl Phys 49:3490
Green MA (1975) Enhancement of Schottky solar cell efficiency above its semiempirical limit. Appl Phys Lett 27:287
Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt: Res Appl 17:183–189
Green MA, Shewchun J (1973) Minority carrier effects upon the small signal and steady-state properties of Schottky diodes. Solid-State Electron 16:1141–1150
Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2020) Solar cell efficiency tables (version 56). Prog Photovolt Res Appl 28:629–638
Hu J, Gordon RG (1992) Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J Appl Phys 71:880–890
Iwantono I, Anggelina F, Saad SKM, Rahman MYA, Umar AA (2017) Influence of Ag ion adsorption on the photoactivity of ZnO nanorods for dye-sensitized solar cell application. Mater Express 7(4):312–318
Jia G, Eisenhawer B, Dellith J, Falk F, Thogersen A, Lyashin U (2013) Multiple core−shell silicon nanowire-based heterojunction solar cells. J Phys Chem C 117:1091–1096
Jiao K, Wang X, Wang Y, Chen Y (2014) Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J Mater Chem C 2:7715–7721
Kaya S, Yilmaz E (2019) Effects of interfacial layer on the electrical properties of n-ZnO/p-Si heterojunction diodes between 260 and 340 K. J Mater Sci Mater Electron 30:12170–12179
Khan AF, Mehmood M, Rana AM, Bhatti MT (2009) Effect of annealing on electrical resistivity of RF-magnetron sputtered nanostructured SnO2 thin films. Appl Surf Sci 255:8562–8565
Kim KH, Park KC, Ma DY (1997) Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 81:7764–7772
Kim D, Kang H, Kim J-M, Kim H (2011) The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD. Appl Surf Sci 257:3776–3779
Kumar V, Singh F, Ntwaeaborwa OM, Swart HC (2013) Effect of Br+6 ions on the structural, morphological and luminescent properties of ZnO/Si thin films. Appl Surf Sci 279:472–478
Li XM, Zhu HW, Wang KL, Wei JQ, Li CY, Jia Y, Li Z, Li X, Wu DH (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748
Li Y, Han BC, Gao M, Wan YZ, Yang J, Du HW, Ma ZQ (2017) A concise way to estimate the average density of interface states in an ITO-SiOx/n-Si heterojunction solar cell. Appl Surf Sci 416:432–438
Liu CY, Kortshagen UR (2010) A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals. Nanoscale Res Lett 5:1253–1256
Liu X, Zhang XW, Meng JH, Yin ZG, Zhang LQ, Wang HL, Wu JL (2015) High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl Phys Lett 106:233901
Lu J, Sundqvist J, Ottosson M, Tarre A, Rosental A, Aarik J, Hårsta A (2004) Microstructure characterisation of ALD-grown epitaxial SnO2 thin films. J Cryst Growth 260:191–200
Lu YM, Jiang J, Becker M, Kramm B, Chen L, Polity A, He YB, Klar PJ, Meyer BK (2015) Polycrystalline SnO2 films grown by chemical vapor deposition on quartz glass. Vacuum 122:347–352
Ma ZQ, Du HW, Yang J, Gao M, Chen SM, Wan YZ (2016) Realization of both high efficiency and quantum tunneling in QM-SIS solar cells. Mater Today Proc 3(2):454–458
Maifi S, Lagha K, Boumedine F, Belkaid MS (2009) M-I-S-S structure based silicon and TCO. In: 2009 4th international conference on design & technology of integrated systems in nanoscal era, pp 140–143
Malik O, De la Hidalga-W FJ, Zúñiga-I C, Ruiz-T G (2008) Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: results and perspectives. J Non-Cryst Solids 354:2472–2477
Mandal L, Askari SSA, Kumar M, Das MK (2020) Band offset engineering for p-SnO/n-mc-Si heterojunction solar cell. Appl Phys Lett 116:234106
Manouni AE, Manjón FJ, Mollar M, Marí B, Gómez R, López MC, Ramos-Barrado JR (2006) Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis. Superlattices Microstruct 39:185–192
Marikkannan M, Vishnukanthan V, Vijayshankar A, Mayandi J, Pearce JM (2015) A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications. AIP Adv 5:027122
Matsubara S, Narui H, Tsuchiya N, Takahashi NS, Kurita S (1989) Effect of InGaAsP surface treatment for indium-tin-oxide/InGaAsP/GaAs solar cells. J Appl Phys 66:3337–3341
Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard F (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750
Minami T, Nanto H, Takata S (1988) Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates. Jpn J Appl Phys 27:L287–L289
Muiva CM, Sathiaraj TS, Maabong K (2011) Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram Int 37:555–560
Noor FA, Oktasendra F, Sustini E, Khairurrijal K (2018) The effects of insulator thickness and substrate doping density on the performance of ZnO/SiO2/n-Si solar cells. Mater Technol 33(14):865–871
Nsgatomo T, Amano Y, Omoto O (1982) Evaluation of SnO2/SiOXln-Si solar cells. Electron Commun Jpn 654(5):106–113
Oener SZ, van de Groep J, Macco B, Bronsveld PCP, Kessels WMM, Polman A, Garnett EC (2016) Metal-insulator-semiconductor nanowire network solar cells. Nano Lett 16:3689–3695
Pauwels HJ, de Visschere P (1978) Influence of an insulating layer on the efficiency of a semiconductor-insulator-semiconductor (SIS) heterojunction solar cell. Solid-State Electron 21:693–698
Saarenpää H, Niemi T, Tukiainen A, Lemmetyinen H, Tkachenko N (2010) Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Sol Energy Mater Sol Cells 94:1379–1383
Saboor A, Shah SM, Hussain H (2019) Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Mater Sci Semicond Process 93:215–225
Saha NR, Chaudhuri DR, Basu PK (1983) Barrier height enhancement in semiconductor insulator-semiconductor solar cells due to surface states and insulator charges. Solar Cells 8:397–401
Saim HB, Campbell DS (1987) Properties of indium-tin-oxide (ITO)/silicon heterojunction solar cells by thick-film techniques. Solar Energy Mater 15:249–260
Schuler T, Aegerter MA (1999) Optical, electrical and structural properties of sol gel ZnO: Al coatings. Thin Solid Films 351:125–131
Sen K, Srivastava RS (1981) A new structure for a semiconductor-insulator-semiconductor solar cell. J Appl Phys 52:7309–7312
Sen K, Srivastava RS (1982) SIS solar cell theory and calculations. Phys Stat Sol A 69:413–418
Shaoqiang C, Jian Z, Xiao F, Xiaohua W, Laiqiang L, Yanling S, Qingsong X, Chang W, Jianzhong Z, Ziqiang Z (2005) Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol gel technique. Appl Surf Sci 241:384–391
Sharma PP et al (1980) Si and GaAs SIS heterostructure solar cells using spray-deposited ITO. Jpn J Appl Phys 19:551
Sharma N, Arif M, Monga S, Shkir M, Mishra YK, Singh A (2020) Investigation of bandgap alteration in graphene oxide with different reduction routes. Appl Surf Sci 513:145396
Shewchun J, Singh R, Green MA (1977) Theory of metal insulator semiconductor solar cells. J Appl Phys 48:765
Shewchun J, Dubow J, Myszkowski A, Singh R (1978) The operation of the semiconductor-insulator-semiconductor (SIS) solar cell: theory. J Appl Phys 49:855–864
Shewchun J, Burk D, Singh R, Spitzer M, Dubow J (1979a) The semiconductor-insulator-semiconductor (indium tin oxide on silicon) solar cell: characteristics and loss mechanisms. J Appl Phys 50:6524–6533
Shewchun J, Dubow J, Wilmsen CW, Singh R, Burk D, Wager JF (1979b) The operation of the semiconductor-insulator-semiconductor solar cell: experiment. J Appl Phys 50:2832–2839
Shewchun J, Burk D, Spitzer MB (1980) MIS and SIS solar cells. IEEE Trans Electron Devices 27(4):705–716
Shih I, Jatar S, Champness CH, Liria N (1982) A semiconductor-insulator-semiconductor CdO·SiO2·Si solar cell. Solar Cells 7:327–330
Shimizu M, Shiosaki T, Kawabata A (1982) Growth of c-axis oriented ZnO thin films with high deposition rate on silicon by CVD method. J Cryst Growth 57:94–100
Simashkevich A, Serban D, Bruc L, Coval A, Fedorov V, Bobeico E, Usatii I (2004) Spray deposited ITO-nSi solar cells with enlarged area. Mold J Phys Sci 3(3–4):334–339
Singh R, Rajkanan K, Brodie DE, Morgan JH (1980) Optimization of oxide-semiconductor/base-semiconductor solar cells. IEEE Trans Electron Devices 27(4):656–662
Smit S, Garcia-Alonso D, Bordihn S, Hanssen MS, Kessels WMM (2014) Metal-oxide-based hole selective tunneling contacts for crystalline silicon solar cells. Sol Energy Mater Sol Cells 120:376–382
Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene−silicon Schottky barrier solar cells. Nano Lett 15:2104–2110
Spitzer M, Shewchun J, Burk D (1980) The operation of the semiconductor-insulator-semiconductor solar cell: barrier height lowering through interface states. J Appl Phys 51:6399–6404
Srivastava S, Swami NK, Srivastava GP (1980) Efficiency of Schottky barrier solar cell. Phys Stat Sol A 68:343
Tomar MS, Garcia FJ (1982) A ZnO/p-CuInSe2 thin film solar cell prepared entirely by spray pyrolysis. Thin Solid Films 90:419–423
Tong C, Yun J, Song H, Gan Q, Anderson WA (2014) Plasmonic-enhanced Si Schottky barrier solar cells. Sol Energy Mater Sol Cells 120:591–595
Um J, Roh B-M, Kim S, Kim SE (2013) Effect of radio frequency power on the properties of p-type SnO deposited via sputtering. Mater Sci Semicond Process 16:1679–1683
Untila GG, Kost TN, Chebotareva AB, Kireeva ED (2015) Contact resistance of indium tin oxide and fluorine-doped indium oxide films grown by ultrasonic spray pyrolysis to diffusion layers in silicon solar cells. Sol Energy Mater Sol Cells 137:26–33
Untila GG, Kost TN, Chebotareva AB (2016) Bifacial 8.3%/5.4% front/rear efficiency ZnO:Al/n-Si heterojunction solar cell produced by spray pyrolysis. Sol Energy 127:184–197
Untila GG, Kost TN, Chebotareva AB (2019) Fluorine-doped ZnO (FZO) films produced by corona-discharge-assisted ultrasonic spray pyrolysis and hydrogenation as electron-selective contacts in FZO/SiOx/p-Si heterojunction crystalline silicon solar cells with 11.7% efficiency. Sol Energy 179:352–362
Untila GG, Kost TN, Chebotareva AB (2020) ITO/SiOx/n-Si heterojunction solar cell with bifacial 16.6%/14.6% front/rear efficiency produced by ultrasonic spray pyrolysis: effect of conditions of SiOx growth by wet-chemical oxidation. Sol Energy 204:395–405
Van Helen P, Mertens RP, Van Overstraeten RJ, Thomas RE (1978) New TiO,-MIS and SiO2-MIS silicon solar cells. IEEE Trans Electron Devices ED25(5):507–511
Vishwakarma SR, Rahmatullah R, Prasad HC (1991) Fabrication of SnO2:As/SiO2/n-Si (textured) (semiconductor/insulator/semiconductor) solar cells by chemical vapor deposition. J Appl Phys 70:7474–7477
Vishwakarma SR, Rahmatullah R, Prasad HC (1993a) Low cost SnO2:P/SiO2/n-Si (textured) heterojunction solar cells. J Phys D Appl Phys 26:959–962
Vishwakarma SR, Rahmatullah R, Prasad HC (1993b) Heterojunction solar cell prepared by chemical vapour deposition of doped SnO2 on textured silicon. Solid State Commun 85:1055–1059
Vishwakarma SR, Rahmatullah R, Prasad HC (1993c) Preparation of heterojunction solar cell. Solid-State Electron 36:1345–1348
Wenas WW, Riyadi S (2006) Carrier transport in high-efficiency ZnO/SiO2/Si solar cells. Sol Energy Mater Sol Cells 90:3261–3267
Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K (2018) Interfacial engineering in graphene bandgap. Chem Soc Rev 47:3059–3099
Young DL, Nemeth W, Grover S, Norman A, Lee BG, Stradins P (2014) Carrier-selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC), pp. 1–5
Zhang M, Gao X, Barra A, Chang P, Huang L, Hellwarth R, Lu JG (2015) Core-shell structured Si/ZnO photovoltaics. Mater Lett 140:59–63
Acknowledgements
We acknowledge Meghnad Saha Institute of Technology for providing us the laboratory and library facilities.
Funding
No institutional funding was used.
Author information
Authors and Affiliations
Contributions
KD: writing the manuscript, theoretical analysis, research; KC: writing the manuscript, research; UG: ideation, supervising, data analysis; AM: supervising, manuscript correction; SR: technical support, data analysis.
Corresponding author
Ethics declarations
Conflict of Interest
The study was not funded by any funding organization. The authors declare that they have no conflicts of interest.
Consent to Participate
This article does not contain any studies involving human participants performed by any of the authors.
Consent for Publication
We give our consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in the Silicon, Springer. Therefore, anyone can read material published in the Journal.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dasgupta, K., Chowdhury, K., Mondal, A. et al. Advancement and Challenges for Schottkey Barrier MIS/SIS Solar Cells: A Review. Trans Indian Natl. Acad. Eng. 7, 13–28 (2022). https://doi.org/10.1007/s41403-021-00263-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41403-021-00263-6