Skip to main content

Advertisement

Log in

Ceramics Processing by Additive Manufacturing

  • Review Article
  • Published:
Transactions of the Indian National Academy of Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) can be a game changer of ceramic industry by opening up new avenues in terms of reduction in cost and ushering in to the domain of designing complicated structure without having dependence on exotic tools. Unlike polymers and metals where AM technology is growing up rapidly, growth of the same in ceramic industry is rather slow due to several technical challenges. However, AM of ceramics is growing steadily as there is considerable urge for producing fully dense defect-free ceramic components with complex geometry for which AM technology comes very handy. Consequently, many AM technologies have been used to fabricate ceramic components with varying results depending upon the nature of the material, AM technology, and part complexity. Thus, beside the nature of the processed ceramic, it is of paramount interest to select right kind of AM process for a particular application in terms of complexity, size density, and surface finish. This review gives present status in AM of ceramics along with some relevant properties of parts produced by AM technology followed by challenges and future prospects of ceramic AM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH (2019) Additive manufacturing: challenges, trends, and applications. Adv Mech Eng 11(2):1–27

    Google Scholar 

  • Acosta M, Wiesner VL, Martinez CJ, Trice RW, Youngblood JP (2013) Effect of polyvinylpyrrolidone additions on the rheology of aqueous, highly loaded alumina suspensions. J Am Ceram Soc 96(5):1372–1382

    Google Scholar 

  • Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC (1996a) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2:4–19

    Google Scholar 

  • Agarwala MK, Bandyopadhyay A, van Weeren R, Langrana NA, Safari A, Danforth SC, Jamalabad VR, Whalen PJ, Donaldson R, Pollinger J (1996b) Fused deposition of ceramics (FDC) for structural silicon nitride components. In: 1996 International Solid Freeform Fabrication Symposium. Proc Solid Freeform Fabricat Sympos 335–344. https://doi.org/10.15781/T2B854376

  • Agarwala MK, Van Weeren R, Bandyopadhyay A, Whalen PJ, Safari A, Danforth SC (1996c) Fused deposition of ceramics and metals: an overview. In: 1996 International Solid Freeform Fabrication Symposium. Proc Solid Freeform Fabricat Sympos 385–392. https://doi.org/10.15781/T2NK36Q96

  • Ahn SH, Montero M, Odell D et al (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257

    Google Scholar 

  • Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data andinterpolation in layered manufacturing. J Mater Process Tech 209(2):664–671

    Google Scholar 

  • Bae CJ, Halloran JW (2011) Influence of residual monomer on cracking in ceramicsfabricated by stereolithography. Int J App Ceram Tech 8(6):1289–1295

    Google Scholar 

  • Bae C, Ramachandran A, Chung K, Park S (2017) Ceramic stereolithography: additive manufacturing for 3D complex ceramic structures. J Korean Ceram Soc 54(6):470–477

    Google Scholar 

  • Bae CJ, Ramachandran A, Halloran JW (2018) Quantifying particle segregation insequential layers fabricated by additive manufacturing. J Eur Ceram Soc 38(11):4082–4088

    Google Scholar 

  • Balla VK, Bose S, Bandyopadhyay A (2008) Processing of bulk alumina ceramics using laser engineered net shaping. Int J Appl Ceram Technol 5(3):234–242

    Google Scholar 

  • Balla VK, Roberson LB, O’Connor GW, Trigwell S, Bose S, Bandyopadhyay A (2012) First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping J 18(6):451–457

    Google Scholar 

  • Bandyopadhyay A, Balla VK, Bernard SA, Bose S (2011) Micro-layered manufacturing. In: Koc M, Ozel T (eds) Micro-Manufacturing Des Manuf Micro-Products. Wiley, New York, pp 97–158

    Google Scholar 

  • Bengisu M (2013) Engineering ceramics. Springer Science & Business Media, New York

    Google Scholar 

  • Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30(12):2563–2567

    Google Scholar 

  • Bernard SA, Balla VK, Bose S, Bandyopadhyay A (2010) Direct laser processing of bulk lead zirconate titanate ceramics. Mater Sci Eng B 172(1):85–88

    Google Scholar 

  • Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I (2007) Ceramic components manufacturing by selective laser sintering. Appl Surface Sci 254(4):989–992

    Google Scholar 

  • Cai K, Roman-Manso B, Smay JE, Zhou J, Osendi MI, Belmonte M, Miranzo P (2012) Geometrically complex silicon carbide structure fabricated by robocasting. J Am Ceram Soc 95(8):2660–2666

  • Cawley JD (1999) Solid freeform fabrication of ceramics. Curr Opin Solid State Mater Sci 4:483–489

    Google Scholar 

  • Chen W, Kirihara S, Miyamoto Y (2007) Fabrication and measurement of micro three dimensional photonic crystals of SiO2 ceramic for terahertz wave applications. J Am Ceram Soc 90(7):2078–2081

    Google Scholar 

  • Chen Z, Li D, Zhou W (2012) Process parameters appraisal of fabricating ceramic partsbased on stereolithography using the Taguchi method. Proc Inst Mech Eng Part B J Eng Manuf 226(7):1249–1258

    Google Scholar 

  • Chen L, He Y, Yang Y et al (2017) The research status and development trend of additive manufacturing technology. Int J Adv Manuf Technol 89:3651–3660

    Google Scholar 

  • Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P, He Y (2019) 3D printing of ceramics: a review. J Euro Ceram Soc 39:661–687

    Google Scholar 

  • Choi J-W, Wicker R, Lee S-H, Choi K-H, Ha C-S, Chung I (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Tech 209(15–16):5494–5503

    Google Scholar 

  • Chung H, Das S (2008) Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater Sci Eng A 487(1–2):251–257

    Google Scholar 

  • Costakis WJ, Rueschhoff LM, Diaz-Cano AI, Youngblood JP, Trice RW (2016) Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. J Eur Ceram Soc 36(14):3249–3256

    Google Scholar 

  • Cynthia G, Nahum T, Peter G, Wilson A, Hansu B, de Novaes OAP, Dachamir H (2011) Laminated object manufacturing of LZSA glass ceramics. Rapid Prototyp J 17(6):424–428

    Google Scholar 

  • Dai C, Qi G, Rangarajan S, Wu S, Langrana NA, Safari A, Danforth SC (1997) High quality, fully dense ceramic components manufactured using Fused Deposition of Ceramics (FDC). In: 1997 International Solid Freeform Fabrication Symposium. Proc Solid Freeform Fabricat Sympos 411–420. https://doi.org/10.15781/T2NC5SZ73

  • Deckers J, Shahzad K, Vleugels J, Kruth J-P (2012) Isostatic pressing assisted indirect selective laser sintering of alumina components. Rapid Prototyping J 18(5):409–419

    Google Scholar 

  • Deckers J, Vleugels J, Kruth J (2014a) Additive manufacturing of ceramics: a review. J Ceram Sci Tech 5(04):245–260

    Google Scholar 

  • Deckers J, Meyers S, Kruth J, Vleugels J (2014b) Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures. Phys Procedia 56:117–124

    Google Scholar 

  • Deckers JP, Shahzad K, Cardon L, Rombouts M, Vleugels J, Kruth J-P (2016) Shaping ceramics through indirect selective laser sintering. Rapid Prototyp J 22(3):544–558

    Google Scholar 

  • de Hazan Y, Heinecke J, Weber A, Graule T (2009) High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants. J Colloid Interf Sci 337:66–74

    Google Scholar 

  • Dellinger JG (2005) Development of model hydroxyapatite bone scaffolds with multiscale porosity for potential load bearing applications. Ph.D.Thesis, University of Illinois at Urbana-Champaign

  • Dellinger JG, Eurell JAC, Jamison RD (2006) Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J Biomed Mater Res Part A 76(2):366–376

    Google Scholar 

  • Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B (2011) In vitro- osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl 26(3):359–380

    Google Scholar 

  • Donald AK, Richard PC, Nora RO, George AG, Allan L, Gyoowan H, Akos B, Stan R (1999) Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites. Rapid Prototyp J 5(2):61–71

    Google Scholar 

  • Du D, Asaoka T, Ushida T, Furukawa KS (2014) Fabrication and perfusion culture ofanatomically shaped artificial bone using stereolithography. Biofabrication 6(4):045002

    Google Scholar 

  • Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    Google Scholar 

  • e Costa EC (2017) A review of additive manufacturing for ceramic production. Rapid Prototyping J 23(5):954–963

    Google Scholar 

  • Elsayed H, Colombo P, Bernardo E (2017) Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers. J Eur Ceram Soc 37(13):4187–4195

    Google Scholar 

  • Eqtesadi S, Motealleh A, Miranda P, Lemos A, Rebelo A, Ferreira JM (2013) A simple recipe for direct writing complex 45S5 Bioglass® 3D scaffolds. Mater Lett 93:68–71

    Google Scholar 

  • Eqtesadi S, Motealleh A, Perera FH, Miranda P, Pajares A, Wendelbo R, Guiberteau F, Ortiz AL (2018) Fabricating geometrically complex B4C ceramic components by robocasting and pressureless spark plasma sintering. Scripta Mater 145:14–18

    Google Scholar 

  • Feilden E, Blanca E, Giuliani F, Saiz E, Vandeperre L (2016) Robocasting of structural ceramic parts with hydrogel inks. J Euro Ceram Soc 36(10):2525–2533

    Google Scholar 

  • Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J (2012) Lithography based additive manufacturing of cellular ceramic structures. Adv Eng Mater 14(12):1052–1058

    Google Scholar 

  • Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28(2):113–122

    Google Scholar 

  • Friedel T, Travitzky N, Niebling F, Scheffler M, Greil P (2005) Fabrication of polymer derived ceramic parts by selective laser curing. J Eur Ceramic Soc 25(2–3):193–197

    Google Scholar 

  • Fu Q, Saiz E, Tomsia AP (2013) Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 7(10):3547–3554

    Google Scholar 

  • Gao C, Yang B, Hu H, Liu J, Shuai C, Peng S (2013) Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Mater Sci Eng C 33(7):3802–3810

    Google Scholar 

  • Garzón EO, Alves JL, Neto RJ (2017) Post-process influence of infiltration on binder jetting technology. In: Silva LFM (ed) Materials design and applications. Springer International Publishing, Cham, pp 233–255

    Google Scholar 

  • German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44(1):1–39

    Google Scholar 

  • Ghazanfari A, Li W, Leu MC, Hilmas GE (2016) A novel extrusion-based additive manufacturing process for ceramic parts. In: 2016 International Solid Freeform Fabrication Symposium. Solid Free Fabr Symp 1509–1529. http://utw10945.utweb.utexas.edu/sites/default/files/2016/121-Ghazanfari.pdf

  • Gibbons G, Williams R, Purnell P et al (2010) 3D printing of cement composites. Adv Appl Ceram 109:287–290

    Google Scholar 

  • Gomes C, de Oliveira APN, Hotza D, Travitzky N, Greil P (2008) LZSA glass-ceramic laminates: fabrication and mechanical properties. J Mater Process Technol 206(1–3):194–201

    Google Scholar 

  • Gomes CM, Rambo CR, De Oliveira APN, Hotza D, Gouvêa D, Travitzky N, Greil P (2009) Colloidal processing of glass–ceramics for laminated object manufacturing. J Am Ceram Soc 92(6):1186–1191

    Google Scholar 

  • Gomes CM, Gutbrod B, Travitzky N, Fey T, Greil P (2010) Preceramic paper derived fibrillar ceramics. Ceram Trans 210:421–426

    Google Scholar 

  • Gomes C, Travitzky N, Greil P, Acchar W, Birol H, de Oliveira APN, Hotza D (2011) Laminated object manufacturing of LZSA glass-ceramics. Rapid Prototyp J 17(6):424–428

    Google Scholar 

  • Gonzalez JA, Mireles J, Lin Y, Wicker RB (2016) Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int 42(9):10559–10564

    Google Scholar 

  • Goodridge R, Dalgarno K, Wood D (2006) Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proc Inst Mech Eng Part H J Eng Med 220(1):57–68

    Google Scholar 

  • Goodridge RD, Wood DJ, Ohtsuki C, Dalgarno KW (2007) Biological evaluation of anapatite-mullite glass-ceramic produced via selective laser sintering. Acta Biomater 3(2):221–231

    Google Scholar 

  • Griffin C, Bautenbach D, McMillin S (1994) Desktop manufacturing: LOM vs pressing. Am Ceram Soc Bull 73:109–113

    Google Scholar 

  • Griffin E, Mumm D, Marshall D (1996) Rapid prototyping of functional ceramic composites. Am Ceram Soc Bull 75(7):65–68

    Google Scholar 

  • Griffith ML, Halloran JW (1996) Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc 79(10):2601–2608

    Google Scholar 

  • He R, Liu W, Wu Z, An D, Huang M, Wu H, Jiang Q, Ji X, Wu S, Xie Z (2018) Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method. Ceram Int 44(3):3412–3416

    Google Scholar 

  • Huang T, Mason MS, Hilmas GE, Leu MC (2006) Freeze-form extrusion fabrication of ceramic parts. Virtual Phys Prototyp 1:93–100

    Google Scholar 

  • Hui S, Wei L, Hui S, Yong S, Song W, Sheng S, Kai L, Guang L (2015) Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. Int J Adv Manufact Technol 81(1–4):15–25

    Google Scholar 

  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026–4034

    Google Scholar 

  • Juste E, Petit F, Lardot V, Cambier F (2014) Shaping of ceramic parts by selective lasermelting of powder bed. J Mater Res 29(17):2086–2094

    Google Scholar 

  • Kechagias J (2007) Investigation of LOM process quality using design of experimentsapproach. Rapid Prototyp J 13(5):316–323

    Google Scholar 

  • Kechagias J, Maropoulos S, Karagiannis S (2004) Process build-time estimator algorithm for laminated object manufacturing. Rapid Prototyp J 10(5):297–304

    Google Scholar 

  • Kirihara S, Niki T (2015) Three dimensional stereolithography of alumina photonic crystals for terahertz wave localization. Int J App Ceram Tech 12(1):32–37

    Google Scholar 

  • Klosterman DA, Chartoff RP, Osborne NR, Graves GA, Lightman A, Han G, Bezeredi A, Rodrigues S (1999a) Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites. Rapid Prototyp J 5(2):61–71

    Google Scholar 

  • Klosterman DA, Chartoff RP, Osborne NR, Graves GA, Lightman A, Han G, Bezeredi A, Rodrigues S (1999b) Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites. Rapid Prototyp J 5(2):51–71

    Google Scholar 

  • Krinitcyn M, Fu Z, Harris J, Kostikov K, Pribytkov GA, Greil P, Travitzky N (2017) Laminated Object Manufacturing of in-situ synthesized MAX-phase composites. Ceram Int 43(12):9241–9245

    Google Scholar 

  • Lakhdar Y, Tuck C, Binner J, Terry A, Goodridge R (2021) Additive manufacturing of advanced ceramic materials. Progress Mater Sci 116:100736

    Google Scholar 

  • Lantada AD, de Blas Romero A, Schwentenwein M, Jellinek C, Homa J (2016) Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges. Smart Mater Struct 25(5):054015

    Google Scholar 

  • Lee MP, Cooper GJ, Hinkley T, Gibson GM, Padgett MJ, Cronin L (2015) Development of a 3D printer using scanning projection stereolithography. Sci Rep 5:9875

    Google Scholar 

  • Leigh SJ, Purssell C, Bowen J, Hutchins DA, Covington JA, Billson D (2011) A miniature flow sensor fabricated by microstereolithography employing a magnetite/acrylic nanocomposite resin. Sens Actuators A Phys 168(1):66–71

    Google Scholar 

  • Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609

    Google Scholar 

  • Li Q, Lewis JA (2003) Nanoparticle inks for directed assembly of three-dimensional periodic structures. Adv Mater 15:1639–1643

    Google Scholar 

  • Lian Q, Sui W, Wu X, Yang F, Yang S (2018) Additive manufacturing of ZrO2 ceramicdental bridges by stereolithography. Rapid Prototyp J 24(1):114–119

    Google Scholar 

  • Liu C, Cheng X, Li B, Chen Z, Mi S, Lao C (2017) Fabrication and characterization of 3D-printed highly porous 3D LiFePO4 electrodes by low temperature direct writing process. Materials 10(8):934

    Google Scholar 

  • Lorrison J, Dalgarno K, Wood D (2005) Processing of an apatite-mullite glass-ceramicand an hydroxyapatite/phosphate glass composite by selective laser sintering. J Mater Sci Mater Med 16(8):775–781

    Google Scholar 

  • Lv X, Ye F, Cheng L, Fan S, Liu Y (2019) Binder jetting of ceramics: powders, binders, printing parameters, equipment, and post-treatment. Ceram Int 45:12609–12624

    Google Scholar 

  • Martinez-Vazquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F (2010) Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater 6(11):4361–4368

    Google Scholar 

  • Martinez-Vazquez FJ, Pajares A, Miranda P (2018) A simple graphite-based support material for robocasting of ceramic parts. J Euro Ceram Soc 38(4):2247–2250

    Google Scholar 

  • Mercelis P, Kruth J-P (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 12(5):254–265

    Google Scholar 

  • Miranda P, Saiz E, Gryn K, Tomsia AP (2006) Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2(4):457–466

    Google Scholar 

  • Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F (2008) Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res Part A 85(1):218–227

    Google Scholar 

  • Mitteramskogler G, Gmeiner R, Felzmann R, Gruber S, Hofstetter C, Stampfl J, Ebert J, Wachter W, Laubersheimer J (2014) Light curing strategies for lithographybased additive manufacturing of customized ceramics. Additive Manuf 1:110–118

    Google Scholar 

  • Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL, Nandwana P, Chmielus M (2020) Binder jet 3D printing—process parameters, materials, properties, and challenges. Progress Mater Sci. https://doi.org/10.1016/j.pmatsci.2020.100707

    Article  Google Scholar 

  • Nadkarni SS, Smay JE (2006) Concentrated barium titanate colloidal gels prepared by bridging flocculation for use in solid freeform fabrication. J Am Ceram Soc 89(1):96–103

    Google Scholar 

  • Niu F, Wu D, Ma G, Wang J, Guo M, Zhang B (2015) Nanosized microstructure of Al2O3–ZrO2(Y2O3) eutectics fabricated by laser engineered net shaping. Scripta Mater 95(1):39–41

    Google Scholar 

  • Oropallo W, Piegl A (2016) Ten challenges in 3D printing. Eng Comput 32:135–148

    Google Scholar 

  • Pan MJ, Leung A, Wu C, Bender B (2004) Optimizing the performance of telescopingactuators through rapid prototyping and finite element modelling. Ceram Trans 150:53–62

    Google Scholar 

  • Pan Y, Zhou C, Chen Y (2012) A fast mask projection stereolithography process for fabricating digital models in minutes. J Manufac Sci Eng 134(5):051011

    Google Scholar 

  • Paul S, Tay D, Panda B et al (2018) Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch Civ Mech Eng 18:311–319

    Google Scholar 

  • Penas O, Zenati R, Dubois J, Fantozzi G (2001) Processing, microstructure, mechanicalproperties of Si3N4 obtained by slip casting and pressureless sintering. Ceram Int 27(5):591–596

    Google Scholar 

  • Peng E, Zhang D, Ding J (2018) Ceramic robocasting: recent achievements, potential, and future developments. Adv Mater 30:1802404 (1–14)

    Google Scholar 

  • Pfaffinger M, Mitteramskogler G, Gmeiner R, Stampfl J (2015) Thermal debinding of ceramic-filled photopolymers. Mater Sci Forum 825–826:75–81

  • Pinargote N, Smirnov A, Peretyagin N, Seleznev A, Peretyagin P (2020) Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: a review. Nanomaterials 10:1300

    Google Scholar 

  • Rangarajan S, Qi G (2000) Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. J Am Ceram Soc 69:1663–1669

    Google Scholar 

  • Ring TA (1996) Fundamentals of ceramic powder processing and synthesis. Academic Press, New York

    Google Scholar 

  • Rocha VG, Saiz E, Tirichenkob LS, Tunon EG (2020) Direct ink writing advances in multi-material structures for a sustainable future. J Mater Chem A 8:15646–15657

    Google Scholar 

  • Rodrigues S, Chartoff R, Klosterman D, Agarwala M, Hecht N (2000) Solid freeformfabrication of functional silicon nitride ceramics by laminated object manufacturing. In: Proceedings from solid freeform fabrication symposium

  • Rueschhoff L, Costakis W, Michie M, Youngblood J, Trice R (2016) Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions. Int J Appl Ceram Technol 13(5):821–830

    Google Scholar 

  • Santoliquidoa O, Colombob P, Ortonaa A (2019) Additive manufacturing of ceramic components by digital light processing: a comparison between the “bottom-up” and the “top-down” approaches. J Euro Ceram Soc 39:2140–2148

    Google Scholar 

  • Scalera F, Corcione CE, Montagna F, Sannino A, Maffezzoli A (2014) Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceram Int 40(10):15455–15462

    Google Scholar 

  • Scheithauer U, Schwarzer E, Ganzer G, Kornig A, Becker W, Reichelt E, Jahn M, Hartel A, Richter H, Moritz T (2015) Micro-reactors made by lithography based ceramic manufacturing (LCM), additive manufacturing and strategic technologies in advanced ceramics. Ceram Trans 258:31–41

    Google Scholar 

  • Scheithauer U, Schwarzer E, Moritz T, Michaelis A (2018) Additive manufacturing of ceramic heat exchanger: opportunities and limits of the lithography-based ceramic manufacturing (LCM). J Mater Eng Perform 27(1):14–20

    Google Scholar 

  • Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P (2013) Robocasting of alumina hollow filament lattice structures. J Eur Ceram Soc 33(15–16):3243–3248

    Google Scholar 

  • Schmidt J, Colombo P (2018) Digital light processing of ceramic components from polysiloxanes. J Euro Ceram Soc 38:57–66

    Google Scholar 

  • Schnieders J, Gbureck U, Vorndran E, Schossig M, Kissel T (2011) The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites. J Biomed Mater Res Part B Appl Biomater 99(2):391–398

    Google Scholar 

  • Schwentenwein M, Homa J (2015) Additive manufacturing of dense alumina ceramics. Int J App Ceram Technol 12(1):1–7

    Google Scholar 

  • Shahzad K, Deckers J, Kruth J-P, Vleugels J (2013) Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. J Mater Process Tech 213(9):1484–1494

    Google Scholar 

  • Shahzad K, Deckers J, Zhang Z, Kruth J-P, Vleugels J (2014) Additive manufacturing of zirconia parts by indirect selective laser sintering. J Eur Ceram Soc 34(1):81–89

    Google Scholar 

  • Shao H, Zhao D, Lin T, He J, Wu J (2017) 3D gel-printing of zirconia ceramic parts. Ceram Int 43(16):13938–13942

    Google Scholar 

  • Shishkovsky I, Yadroitsev I, Bertrand Ph, Smurov I (2007) Alumina–zirconium ceramics synthesis by selective laser sintering/melting. Appl Surface Sci 254:966–970

    Google Scholar 

  • Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res Part A 83(3):747–758

    Google Scholar 

  • Sin SL, Yeong WY, Wiria F, Tay BY, Zhao Z, Tian Z, Yang S (2017) Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping J 23(3):611–623

    Google Scholar 

  • Singh P, Shaikh Q, Balla VK, Atre SV, Kate KH (2020) Estimating powder-polymer material properties used in design for metal fused filament fabrication (DfMF 3). JOM 72(1):485–495

    Google Scholar 

  • Smay JE, Cesarano J, Lewis JA (2002a) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437

    Google Scholar 

  • Smay JE, Gratson GM, Shepherd RF, Cesarano J III, Lewis JA (2002b) Directed colloidal assembly of 3D periodic structures. Adv Mater 14(18):1279–1283

    Google Scholar 

  • Steidle C, Klosterman D, Chartoff R, Graves G, Osborne N (1999) Automated fabrication of custom bone implants using rapid prototyping. In: 44th international SAMPE symposium and exhibition, pp 1866–1877

  • Stuffle K, Mulligan A, Calvert P, Lombardi J (1993) Solid freebody forming of ceramics from polymerizable slurry. In: 1993 International Solid Freeform Fabrication Symposium. Proc Solid Freeform Fabricat Sympos 60–63. https://doi.org/10.15781/T2WM14B4S

  • Sudan K, Singh P, Gökçe A, Balla VK, Kate KH (2020) Processing of hydroxyapatite and its composites using ceramic fused filament fabrication (CF3). Ceram Int 46(15):23922–23931

    Google Scholar 

  • Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of inter-digitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543

    Google Scholar 

  • Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T (2009) Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med 20(6):1281–1289

    Google Scholar 

  • Tan K, Chua C, Leong K, Cheah C, Cheang P, Bakar MA, Cha S (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123

    Google Scholar 

  • Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S (2013) Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regenerat Med 7(8):631–641

    Google Scholar 

  • Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR, Stampfl J (2012) Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater Lett 74:81–84

    Google Scholar 

  • Travitzky N, Windsheimer H, Fey T, Greil P (2008) Preceramic paper derived ceramics. J Am Ceram Soc 91(11):3477–3492

    Google Scholar 

  • Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16(6):729–754

    Google Scholar 

  • Vaidyanathan R, Lombardi J, Walish J (1999) Extrusion freeform fabrication of functional ceramic prototypes. In: 1999 International Solid Freeform Fabrication Symposium. Proc Solid Freeform Fabricat Sympos 327–334. https://doi.org/10.26153/tsw/785

  • Vaidyanathan R, Walish J, Lombardi JL, Kasichainula S, Calvert P, Cooper KC (2000) The extrusion freeforming of functional ceramic prototypes. J Mater 52:34–37

    Google Scholar 

  • Vastamäki T (2019) Stereolithography 3D-printing of ceramics. Master Thesis, Tampere University

  • Vrancken B, Thijs L, Kruth P et al (2012) Heat treatment of Ti-6Al-4V produced byselective laser melting: microstructure and mechanical properties. J Alloy Compd 541:177–185

    Google Scholar 

  • Wang J, Dommati H, Hsieh S (2019) Review of additive manufacturing methods for high-performance ceramic materials. Int J Adv Manuf Technol 103:2627–2647

    Google Scholar 

  • Weisensel L, Travitzky N, Sieber H, Greil P (2004) Laminated object manufacturing (LOM) of Si/SiC composites. Adv Eng Mater 6(11):899–903

    Google Scholar 

  • Wilkes J, Hagedorn Y-C, Meiners W, Konrad W (2013) Additive manufacturing of ZrO2, Al2O3 ceramic components by selective laser melting. Rapid Prototyp J 19:51–57

    Google Scholar 

  • Windsheimer H, Travitzky N, Hofenauer A, Greil P (2007) Laminated object manufacturing of preceramic-paper-derived Si/SiC composites. Adv Mater 19(24):4515–4519

    Google Scholar 

  • Winkel A, Meszaros R, Reinsch S, Müller R, Travitzky N, Fey T, Greil P, Wondraczek L (2012) Sintering of 3D-printed glass/HAp composites. J Am Ceram Soc 95(11):3387–3393

    Google Scholar 

  • Wu H et al (2017) Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int 43:968–972

    Google Scholar 

  • Xu M, Lewis JA (2007) Phase behavior and rheological properties of polyamine-rich complexes for direct-write assembly. Langmuir 23:12752–12759

    Google Scholar 

  • Yasa E, Kruth J (2011) Application of laser re-melting on selective laser melting parts. Adv Prod Eng Manag 6:259–270

    Google Scholar 

  • Yu J, Wang H, Zhang J (2009) Neural network modeling and analysis of gel castingpreparation of porous Si3N4 ceramics. Ceram Int 35(7):2943–2950

    Google Scholar 

  • Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4:35–45

    Google Scholar 

  • Zanchetta E, Cattaldo M, Franchin G, Schwentenwein M, Homa J, Brusatin G, Colombo P (2016) Stereolithography of SiOC ceramic microcomponents. Adv Mater 28(2):370–376

    Google Scholar 

  • Zareiyan B, Khoshnevis B (2017) Interlayer adhesion and strength of structures in Contour crafting—effects of aggregate size, extrusion rate, and layer thickness. Automat Constr 81:112–121

    Google Scholar 

  • Zhang Y, He X, Han J, Du S, Zhang J (2001a) Al2O3 ceramics preparation by LOM (laminated object manufacturing). Int J Adv Manuf Technol 17:531–534

    Google Scholar 

  • Zhang Y, Han J, Zhang X, He X, Li Z, Du S (2001b) Rapid prototyping and combustionsynthesis of TiC/Ni functionally gradient materials. Mater Sci Eng A 299(1–2):218–224

    Google Scholar 

  • Zhang W, Melcher R, Travitzky N, Bordia RK, Greil P (2009) Three-dimensional printing of complex-shaped alumina/glass composites. Adv Engg Mater 11(12):1039–1043

    Google Scholar 

  • Zhang AP, Qu X, Soman P, Hribar KC, Lee JW, Chen S, He S (2012) Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 24(31):4266–4270

    Google Scholar 

  • Zhou WZ, Li D, Chen ZW, Chen S (2010) Direct fabrication of an integral ceramic mould by stereolithography. P I Mech Eng B J Eng 224(B2):237–243

    Google Scholar 

  • Zhou M, Liu W, Wu H, Song X, Chen Y, Cheng L, He F, Chen S, Wu S (2016) Preparation of a defect-free alumina cutting tool via additive manufacturing basedon stereolithography—optimization of the drying and debinding processes. Ceram Int 42(10):11598–11602

    Google Scholar 

  • Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Additive Manuf 28:781–801

    Google Scholar 

  • Zocca A, Colombo P, Gomes CM, Guenster J (2015) Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc 98(7):1983–2001

    Google Scholar 

  • Zocca A, Franchin G, Elsayed H, Gioffredi E, Bernardo E, Colombo P (2016) Direct ink writing of a preceramic polymer and fillers to produce hardystonite (Ca2ZnSi2O7) bioceramic scaffolds. J Am Ceram Soc 99(6):1960–1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsi K. Balla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, P., Balla, V.K. Ceramics Processing by Additive Manufacturing. Trans Indian Natl. Acad. Eng. 6, 879–893 (2021). https://doi.org/10.1007/s41403-021-00225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41403-021-00225-y

Keywords

Navigation