Skip to main content
Log in

Microscopic Laws vs. Macroscopic Laws: Perspectives from Kinetic Theory and Hydrodynamics

  • Original Article
  • Published:
Transactions of the Indian National Academy of Engineering Aims and scope Submit manuscript

Abstract

Reductionism is a prevalent viewpoint in science according to which all physical phenomena can be understood from fundamental laws of physics. Anderson (Science 177:393 1972), Laughlin and Pines (PNAS 97:28 2000), and others have countered this viewpoint and argued in favour of hierarchical structure of the universe and laws. In this paper, we advance the latter perspective by showing that some of the complex flow properties—Kolmogorov’s theory of turbulence, turbulence dissipation and diffusion, and dynamic pressure—derived using hydrodynamic equations (macroscopic laws) are very difficult, if not impossible, to describe in microscopic framework, e.g. kinetic theory. We also provide several other examples of hierarchical description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amit DJ (1978) Field theory, the renormalization group, and critical phenomena International series in pure and applied physics. World Scientific, Singapore

    Google Scholar 

  • Anas M, Verma MK (2019) Modeling Ekman and quasi-static magnetohydrodynamic turbulence using Pao’s hypothesis. Phys Rev Fluids 4(10):104611

    Google Scholar 

  • Anderson PW (1972) More is different. Science 177(4):393–396

    Google Scholar 

  • Anderson PW (2011) More and different. Notes from a thoughtful Curmudgeon. World Scientific, Singapore

    Google Scholar 

  • Auyang SY (1999) Foundations of complex-system theories: in economics, evolutionary biology, and statistical physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Balaji V (2020) Climbing down Charney’s ladder: machine learning and the post-Dennard era of computational climate science. Phill Trans.R Soc A p. preprint

  • Batterman RW (2002) The devil in the details. Oxford studies in philosophy of science. Oxford University Press, Oxford

    Google Scholar 

  • Berry M (2002) Singular limits. Phys Today 55(5):10–11

    Google Scholar 

  • Bisi M (2014) Incompressible Navier-Stokes equations from Boltzmann equations for reacting mixtures. J Phys A 47(45):455203

    MathSciNet  MATH  Google Scholar 

  • Bolgiano R (1959) Turbulent spectra in a stably stratified atmosphere. J Geophys Res 64(12):2226–2229

    Google Scholar 

  • Carroll S (2011) From eternity to here. Oneworld Publications, London

    Google Scholar 

  • Choudhuri AR (1998) The physics of fluids and plasmas: an introduction for astrophysicists. Cambridge University Press, Cambridge

    Google Scholar 

  • Feynman RP (1963) The Feynman lectures on physics: Vol 1 mainly mechanics, radiation, and heat, 1st edn. Addison Wesley, Reading, MA

  • Feynman RP (1994) The character of physical law. Modern Library, New York

    Google Scholar 

  • Fowler CMR (2004) The solid earth: an introduction to global geophysics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Frisch U (1995) Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hawking S (2006) The theory of everything. Jaico Publishing House, Mumbai

    Google Scholar 

  • Jones CA (2008) Dynamo theory. In: Cardin P, Cugliandolo LF (eds) Dynamo. Elsevier, Amsterdam, pp 45–135

    Google Scholar 

  • Kane G (2017) Modern elementary particle physics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Acad Nauk SSSR 32:16–18

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Acad Nauk SSSR 30:301–305

    MathSciNet  Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical physics. Course of theoretical physics, 3rd edn. Elsevier, Oxford

    Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid mechanics. Course of theoretical physics, 2nd edn. Elsevier, Oxford

    Google Scholar 

  • Laughlin RB (2006) A different universe: reinventing physics from the bottom down. Basic Books, New York

    Google Scholar 

  • Laughlin RB, Pines D (2000) The theory of everything. PNAS 97(1):28–31

    MathSciNet  Google Scholar 

  • Lesieur M (2008) Turbulence in fluids. Springer-Verlag, Dordrecht

    MATH  Google Scholar 

  • Liboff RL (1998) Kinetic theory. Wiley, Hoboken

    Google Scholar 

  • Lifshitz EM, Pitaevskii LP (2012) Physical kinetics. Course of theoretical physics. Pergamon Press, Oxford

    Google Scholar 

  • McComb WD (1990) The physics of fluid turbulence. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Obukhov AM (1959) On influence of buoyancy forces on the structure of temperature field in a turbulent flow. Dokl Acad Nauk SSSR 125:1246

    Google Scholar 

  • Pathria (2011) Statistical mechanics, 3rd edn. Elsevier, Oxford

    MATH  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Singh SK, Thantanapally C, Ansumali S (2016) Gaseous microflow modeling using the Fokker-Planck equation. Phys Rev E 94(6):063307

    MathSciNet  Google Scholar 

  • Siscoe GL (1983) Solar system magnetohydrodynamics. In: R.L. Carovillano, J.M. Forbes (eds.) Solar terrestrial physics principles and theoretical foundations

  • Succi S (2001) The lattice boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Taylor GI (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc A 223(1):446–468

    Google Scholar 

  • Verma MK (2012) Variable enstrophy flux and energy spectrum in two-dimensional turbulence with Ekman friction. EPL 98:14003

    Google Scholar 

  • Verma MK (2017) Anisotropy in quasi-static magnetohydrodynamic turbulence. Rep Prog Phys 80(8):087001

    Google Scholar 

  • Verma MK (2018) Physics of buoyant flows: from instabilities to turbulence. World Scientific, Singapore

    MATH  Google Scholar 

  • Verma MK (2019) Asymmetric energy transfers in driven nonequilibrium systems and arrow of time. Eur Phys J B 92:190

    MathSciNet  Google Scholar 

  • Verma MK (2019) Description of nature: A single law or many laws? Indian Acad Sci Conf Ser 2(1):121–124

    Google Scholar 

  • Verma MK (2019) Energy transfers in fluid flows: multiscale and spectral perspectives. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Verma MK (2020) Boltzmann equation and hydrodynamic equations: their equilibrium and non-equilibrium behaviour. Phil Trans R Soc A 378(2175):20190470

    MathSciNet  Google Scholar 

  • Weinberg S (1992) Dreams of a final theory. Vintage, New York

    Google Scholar 

  • Wilson KG, Kogut J (1974) The renormalization group and the \(\varepsilon\) expansion. Phys Rep 12(2):75–199

    Google Scholar 

  • Zank GP, Matthaeus WH (1991) The equations of nearly incompressible fluids. I—hydrodynamics, turbulence, and waves. Phys Fluids A 3(1):69–82

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Anurag Gupta and Michael Berry for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra K. Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K. Microscopic Laws vs. Macroscopic Laws: Perspectives from Kinetic Theory and Hydrodynamics. Trans Indian Natl. Acad. Eng. 5, 491–496 (2020). https://doi.org/10.1007/s41403-020-00152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41403-020-00152-4

Keywords

Navigation