Skip to main content

Advertisement

Log in

Validation and application of a coupled xenon-transport and reactor dynamic model of Molten-salt reactor experiment

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Liquid-fueled molten-salt reactors have dynamic features that distinguish them from solid-fueled reactors, such that conventional system-analysis codes are not directly applicable. In this study, a coupled dynamic model of the Molten-Salt Reactor Experiment (MSRE) is developed. The coupled model includes the neutronics and single-phase thermal-hydraulics modeling of the reactor and validated xenon-transport modeling from previous studies. The coupled dynamic model is validated against the frequency-response and transient-response data from the MSRE. The validated model is then applied to study the effects of xenon and void transport on the dynamic behaviors of the reactor. Plant responses during the unique initiating events such as off-gas system blockages and loss of circulating voids are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.17333 and https://www.doi.org/10.57760/sciencedb.17333.

Code availability

The model is available at https://github.com/jiaqic2014/MSRE_Dynamics-Xenon.

Notes

  1. In this work, the term “modified point-reactor equations (mPKEs)" is universally used for PKEs different from those for solid-fueled reactors. The formulation of these equations differ in the literature. Wooten and Powers [25] attempted to categorize different mPKEs, although their classification did not cover all existing models such as the classical model by Kerlin et al. [28]

  2. For density and viscosity, the temperature dependence is taken from data for uranium-free salt, and the correlation is linearly scaled to match the reported data for the fuel salt.

  3. The sample time refers to the maximum time step used in the simulation. Smaller timesteps are automatically applied by the solver during quick transient.

References

  1. C.-F. Schleussner, J. Rogelj, M. Schaeffer et al., Science and policy characteristics of the Paris agreement temperature goal. Nat. Clim. Change 6(9), 827–835 (2016). https://doi.org/10.1038/nclimate3096

    Article  ADS  Google Scholar 

  2. A. Asuega, B.J. Limb, J.C. Quinn, Techno-economic analysis of advanced small modular nuclear reactors. Appl. Energ. 334, 120669 (2023). https://doi.org/10.1016/j.apenergy.2023.120669

    Article  Google Scholar 

  3. S. Hong, C.J.A. Bradshaw, B.W. Brook, Global zero-carbon energy pathways using viable mixes of nuclear and renewables. Appl. Energ. 143, 451–459 (2015). https://doi.org/10.1016/j.apenergy.2015.01.006

    Article  ADS  Google Scholar 

  4. B. Mignacca, G. Locatelli, Economics and finance of molten salt reactors. Prog. Nucl. Energ. 129, 103503 (2020). https://doi.org/10.1016/j.pnucene.2020.103503

    Article  Google Scholar 

  5. M. Lin, M.S. Cheng, Z.M. Dai, Feasibility of an innovative long-life molten chloride-cooled reactor. Nucl. Sci. Tech. 31(4), 33 (2020). https://doi.org/10.1007/s41365-020-0751-7

    Article  Google Scholar 

  6. R. Roper, M. Harkema, P. Sabharwall et al., Molten salt for advanced energy applications: a review. Ann. Nucl. Energy 169, 108924 (2022). https://doi.org/10.1016/j.anucene.2021.108924

    Article  Google Scholar 

  7. R.C. Robertson, Conceptual design study of a single-fluid Molten-Salt Breeder Reactor (Oak Ridge National Lab., Oak Ridge, 1971). https://doi.org/10.2172/4030941

  8. J.R. Engel, Experience with the Molten-Salt Reactor experiment. Nucl. Appl. Technol. 8(2), 118–136 (1970). https://doi.org/10.13182/NT8-2-118

    Article  Google Scholar 

  9. C. Wulandari, A. Waris, S. Permana et al., Evaluating the JEFF 3.1, ENDF/B-VII.0, JENDL 3.3, and JENDL 4.0 nuclear data libraries for a small 100 MWe molten salt reactor with plutonium fuel. Nucl. Sci. Tech. 33(12), 165 (2022). https://doi.org/10.1007/s41365-022-01141-8

    Article  Google Scholar 

  10. X.C. Zhao, R. Yan, G.F. Zhu et al., Plutonium utilization in a small modular molten-salt reactor based on a batch fuel reprocessing scheme. Nucl. Sci. Tech. 35(4), 68 (2024). https://doi.org/10.1007/s41365-024-01428-y

    Article  Google Scholar 

  11. J. Chen, C.S. Brooks, Design and cost-benefit analysis of the xenon removal system for the molten salt demonstration reactor. Ann. Nucl. Energy 207, 110705 (2024). https://doi.org/10.1016/j.anucene.2024.110705

    Article  Google Scholar 

  12. V. Mishra, E. Branger, S. Grape et al., Material attractiveness of irradiated fuel salts from the Seaborg compact Molten Salt reactor. Nucl. Eng. Technol. (2024). https://doi.org/10.1016/j.net.2024.04.045

    Article  Google Scholar 

  13. G.A. Wen, J.H. Wu, C.Y. Zou et al., Preliminarysafety analysis for a heavy water-moderated molten salt reactor. Nucl. Sci. Tech. 35(6), 106 (2024). https://doi.org/10.1007/s41365-024-01476-4

    Article  Google Scholar 

  14. Y.P. Zhang, Y.W. Ma, J.H. Wu et al., Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor. Nucl. Sci. Tech. 31(11), 108 (2020). https://doi.org/10.1007/s41365-020-00823-5

    Article  Google Scholar 

  15. M. Rosenthal, P. Kasten, R. Briggs, Molten-salt reactors-history, status, and potential. Nucl. Appl. Technol. 8(2), 107–117 (1970). https://doi.org/10.13182/NT70-A28619

    Article  Google Scholar 

  16. I.A.E. Agency, Non-baseload operation in nuclear power plants: load following and frequency control modes of flexible operation (International atomic energy agency, Vienna, 2018)

    Google Scholar 

  17. G. Chen, M. Li, Y. Zou et al., Analysis of load-following operation characteristics of liquid fuel molten salt reactor. Prog. Nucl. Energ. 150, 104308 (2022). https://doi.org/10.1016/j.pnucene.2022.104308

    Article  Google Scholar 

  18. E.M. Duchnowski, R.F. Kile, K. Bott et al., Pre-conceptual high temperature gas-cooled microreactor design utilizing two-phase composite moderators. Part I: Microreactor design and reactor performance. Prog. Nucl. Energ. 149, 104257 (2022). https://doi.org/10.1016/j.pnucene.2022.104258

    Article  Google Scholar 

  19. J.J. DiNunno, F.D. Anderson, R.E. Baker et al., Calculation of distance factors for power and test reactor sites (U.S Atomic Energy Commission, Washington, D. C., 1962)

    Book  Google Scholar 

  20. J.R. Engel, R.C. Steffy, Xenon behavior in the Molten Salt Reactor Experiment (Oak Ridge National Lab., Oak Ridge, 1971). https://doi.org/10.2172/4731186

  21. S. Shahbazi, D. Grabaskas, S. Thomas et al., Survey and assessment of computational capabilities for advanced (non-LWR) reactor mechanistic source term analysis (Argonne National Lab., DuPage County, 2020). https://doi.org/10.2172/1772327

  22. D.J. Diamond, N.R. Brown, R. Denning et al., Phenomena important in modeling and simulation of molten salt reactors (U.S. Nuclear Regulatory Commission, Upton, 2018). https://doi.org/10.2172/1436452

  23. U.S.N.R. Commission, NRC non-light water reactor (non-LWR) vision and strategy, Volume 1-Computer code suite for non-LWR plant systems analysis (United States Nuclear Regulatory Commission, Rockville, 2020)

  24. U.S.N.R. Commission, NRC non-light water reactor (non-LWR) vision and strategy, Volume 3-Computer code development plans for severe accident progression, source term, and consequence analysis (United States Nuclear Regulatory Commission, Rockville, 2020)

  25. D. Wooten, J.J. Powers, A review of molten salt reactor kinetics models. Nucl. Sci. Eng. 191(3), 203–230 (2018). https://doi.org/10.1080/00295639.2018.1480182

    Article  ADS  Google Scholar 

  26. A. Rykhlevskii, J.W. Bae, K.D. Huff, Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor. Ann. Nucl. Energy 128, 366–379 (2019). https://doi.org/10.1016/j.anuce.2019.01.030

    Article  Google Scholar 

  27. X.C. Zhao, Y. Zou, R. Yan et al., Analysis of burnup performance and temperature coefficient for a small modular molten-salt reactor started with plutonium. Nucl. Sci. Tech. 34(1), 17 (2023). https://doi.org/10.1007/s41365-022-01155-2

    Article  Google Scholar 

  28. T.W. Kerlin, S.J. Ball, R.C. Steffy, Theoretical dynamics analysis of the Molten-Salt reactor experiment. Nucl. Technol. 10(2), 118–132 (1971). https://doi.org/10.13182/NT71-A30920

    Article  ADS  Google Scholar 

  29. D. Zhang, S. Qiu, G. Su, Development of a safety analysis code for molten salt reactors. Nucl. Eng. Des. 239(12), 2778–2785 (2009). https://doi.org/10.1016/j.nucengdes.2009.08.020

    Article  Google Scholar 

  30. S. Dulla, P. Ravetto, M.M. Rostagno, Neutron kinetics of fluid-fuel systems by the quasi-static method. Ann. Nucl. Energy 31(15), 1709–1733 (2004). https://doi.org/10.1016/j.anucene.2004.05.004

    Article  Google Scholar 

  31. E. Compere, S. Kirslis, E. Bohlmann et al., Fission product behavior in the Molten Salt Reactor Experiment (Oak Ridge National Lab., Oak Ridge, 1975). https://doi.org/10.2172/4077644

  32. J. Chen, C.S. Brooks, Modeling of transient and steady state xenon behavior in the Molten Salt Reactor Experiment. Ann. Nucl. Energy 204, 110525 (2024). https://doi.org/10.1016/j.anucene.2024.110525

    Article  Google Scholar 

  33. T. Kerlin, S. Ball, Experimental dynamic analysis of the Molten-Salt Reactor Experiment (Oak Ridge National Lab, Oak Ridge, 1966)

    Google Scholar 

  34. R. Steffy Jr, Experimental dynamic analysis of MSRE with 233\(U\) fuel (Oak Ridge National Lab., Oak Ridge, 1970). https://doi.org/10.2172/4132458

  35. T.W. Kerlin, S.J. Ball, R.C. Steffy et al., Experiences with dynamic testing methods at the molten-salt reactor experiment. Nucl. Technol. 10(2), 103–117 (1971). https://doi.org/10.13182/NT71-A30919

    Article  ADS  Google Scholar 

  36. J. Krepel, U. Grundmann, U. Rohde et al., DYN1D-MSR dynamics code for molten salt reactors. Ann. Nucl. Energy 32(17), 1799–1824 (2005). https://doi.org/10.1016/j.anucene.2005.07.007

    Article  Google Scholar 

  37. J. Křepel, U. Rohde, U. Grundmann et al., DYN3D-MSR spatial dynamics code for molten salt reactors. Ann. Nucl. Energy 34(6), 449–462 (2007). https://doi.org/10.1016/j.anucene.2006.12.011

    Article  Google Scholar 

  38. B.E. Prince, S.J. Ball, J.R. Engel et al., Zero-power physics experiments on the Molten-Salt Reactor Experiment (Oak Ridge National Lab., Oak Ridge, 1968). https://doi.org/10.2172/4558029

  39. M.W. Rosenthal, R.B. Briggs, P.R. Kasten, Molten-salt reactor program semiannual progress report for period ending february 28, 1969 (Oak Ridge National Lab. , Oak Ridge, 1969). https://doi.org/10.2172/4780471

  40. A. Cammi, V. Di Marcello, L. Luzzi et al., A multi-physics modelling approach to the dynamics of Molten Salt Reactors. Ann. Nucl. Energy 38(6), 1356–1372 (2011). https://doi.org/10.1016/j.anucene.2011.01.037

    Article  Google Scholar 

  41. A. Cammi, C. Fiorina, C. Guerrieri et al., Dimensional effects in the modelling of MSR dynamics: moving on from simplified schemes of analysis to a multi-physics modelling approach. Nucl. Eng. Des. 246, 12–26 (2012). https://doi.org/10.1016/j.nucengdes.2011.08.002

    Article  Google Scholar 

  42. M. Zanetti, A. Cammi, C. Fiorina et al., A Geometric Multiscale modelling approach to the analysis of MSR plant dynamics. Prog. Nucl. Energ. 83, 82–98 (2015). https://doi.org/10.1016/j.pnucene.2015.02.014

    Article  Google Scholar 

  43. L. He, C.G. Yu, R.M. Ji et al., Development of a dynamics model for graphite-moderated channel-type molten salt reactor. Nucl. Sci. Tech. 30(1), 18 (2019). https://doi.org/10.1007/s41365-018-0541-7

    Article  Google Scholar 

  44. R.C. Diniz, A.D.C. Gonçalves, F.S.D.S. da Rosa, Neutron point kinetics model with precursors’ shape function update for molten salt reactor. Nucl. Eng. Des. 360, 110525 (2020). https://doi.org/10.1016/j.nucengdes.2019.110466

    Article  Google Scholar 

  45. Z. Guo, D. Zhang, Y. Xiao et al., Simulations of unprotected loss of heat sink and combination of events accidents for a molten salt reactor. Ann. Nucl. Energy 53, 309–319 (2013). https://doi.org/10.1016/j.anucene.2012.09.009

    Article  Google Scholar 

  46. D. Zhang, A. Rineiski, C. Wang et al., Development of a kinetic model for safety studies of liquid-fuel reactors. Prog. Nucl. Energ. 81, 104–112 (2015). https://doi.org/10.1016/j.pnucene.2015.01.011

    Article  Google Scholar 

  47. K. Zhuang, L. Cao, Y. Zheng et al., Studies on the molten salt reactor: code development and neutronics analysis of MSRE-type design. J. Nucl. Sci. Technol. 52(2), 251–263 (2015). https://doi.org/10.1080/00223131.2014.944240

    Article  Google Scholar 

  48. L. Cao, K. Zhuang, Y. Zheng et al., Transient analysis for liquid-fuel molten salt reactor based on MOREL2.0 code. Int. J. Energ. Res. 42(1), 261–275 (2018). https://doi.org/10.1002/er.3828

    Article  Google Scholar 

  49. B. Zhou, X.H. Yu, Y. Zou et al., Study on dynamic characteristics of fission products in 2 MW molten salt reactor. Nucl. Sci. Tech. 31(2), 17 (2020). https://doi.org/10.1007/s41365-020-0730-z

    Article  Google Scholar 

  50. X. He, Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor. Dissertation,Technische Universität München (2016)

  51. T. Hanusek, R.M. Juan, Analysis of the Power and Temperature distribution in molten salt reactors with TRACE. Appl. MSRE Ann. Nucl. Energy 157, 108208 (2021)

    Article  Google Scholar 

  52. C. Shi, M. Cheng, G. Liu, Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code. Nucl. Eng. Des. 305, 378–388 (2016). https://doi.org/10.1016/j.nucengdes.2016.05.034

    Article  Google Scholar 

  53. R. Li, M. Cheng, Z. Dai, Improvement of the delayed neutron precursor transport model in RELAP5 for liquid-fueled molten salt reactor. Nucl. Eng. Des. 394, 111817 (2022). https://doi.org/10.1016/j.nucengdes.2022.111817

    Article  Google Scholar 

  54. J. Fang, R. Hu, M. Gorman et al., SAM enhancements and model developments for molten-salt-fueled reactors (Argonne National Lab. , DuPage County, 2020). https://doi.org/10.2172/1763728

  55. S.A. Walker, M.E. Tano Retamales, A. Abou Jaoude, Application of NEAMS multiphysics framework for species tracking in molten salt reactors (Idaho National Lab., Idaho Falls, 2023). https://doi.org/10.2172/2201960

  56. G. Yang, L. Zou, R. Hu, Updated SAM model for the Molten Salt Reactor Experiment (MSRE) (Argonne National Lab. , DuPage County, 2023). https://doi.org/10.2172/1972459

  57. R. Salko Jr, T. Mui, R. Hu et al., Implementation of a Gas Transport Model in SAM for Modeling of Molten Salt Reactors (Oak Ridge National Lab., Oak Ridge, 2023). https://doi.org/10.13182/NURETH20-40836

  58. G. Yang, M.K. Jaradat, W. Sik Yang et al., Development of coupled PROTEUS-NODAL and SAM code system for multiphysics analysis of molten salt reactors. Ann. Nucl. Energy 168, 108889 (2022). https://doi.org/10.1016/j.anucene.2021.108889

    Article  Google Scholar 

  59. V. Singh, A.M. Wheeler, M.R. Lish et al., Nonlinear dynamic model of Molten-Salt Reactor Experiment - Validation and operational analysis. Ann. Nucl. Energy 113, 177–193 (2018). https://doi.org/10.1016/j.anucene.2017.10.047

    Article  Google Scholar 

  60. V. Singh, M.R. Lish, O. Chvála et al., Dynamics and control of molten-salt breeder reactor. Nucl. Eng. Technol. 49(5), 887–895 (2017). https://doi.org/10.1016/j.net.2017.06.003

    Article  Google Scholar 

  61. I. Singh, A. Gupta, U. Kannan, Studies on reactivity coefficients of thorium-based fuel \((\text{Th}-^{233}\text{U})\text{O}_{2}\) with molten salt (Flibe) cooled pebble. Nucl. Sci. Eng. 191(2), 161–177 (2018). https://doi.org/10.1080/00295639.2018.1463745

    Article  ADS  Google Scholar 

  62. V. Singh, A.M. Wheeler, B.R. Upadhyaya et al., Plant-level dynamic modeling of a commercial-scale molten salt reactor system. Nucl. Eng. Des. 360, 110457 (2020). https://doi.org/10.1016/j.nucengdes.2019.110457

    Article  Google Scholar 

  63. V. Pathirana, O. Chvala, A.M. Wheeler, Scalable modular dynamic molten salt reactor system model with decay heat. Ann. Nucl. Energy 154, 108060 (2021). https://doi.org/10.1016/j.anucene.2020.108060

    Article  Google Scholar 

  64. V. Pathirana, O. Chvala, S. Skutnik, Depletion dependency of molten salt reactor dynamics. Ann. Nucl. Energy 168, 108852 (2022). https://doi.org/10.1016/j.anucene.2021.108852

    Article  Google Scholar 

  65. N. Dunkle, O. Chvala, Effect of xenon removal rate on load following in high power thermal spectrum Molten-Salt Reactors (MSRs). Nucl. Eng. Des. 409, 112329 (2023). https://doi.org/10.1016/j.nucengdes.2023.112329

    Article  Google Scholar 

  66. N. Dunkle, J. Richardson, V. Pathirana et al., NERTHUS thermal spectrum molten salt reactor neutronics and dynamic model. Nucl. Eng. Des. 411, 112390 (2023). https://doi.org/10.1016/j.nucengdes.2023.112390

    Article  Google Scholar 

  67. T.J. Price, O. Chvala, Z. Taylor, Molten salt reactor xenon analysis: review and decomposition. J. Nuclear Eng. Radiat. Sci. (2019). https://doi.org/10.1115/1.4043813

    Article  Google Scholar 

  68. T.J. Price, O. Chvala, Z. Taylor, Xenon in molten salt reactors: the effects of solubility, circulating particulate, ionization, and the sensitivity of the circulating void fraction. Nucl. Eng. Technol. 52(6), 1131–1136 (2020). https://doi.org/10.1016/j.net.2019.11.026

    Article  Google Scholar 

  69. T. Price, O. Chvala, G. Bereznai, A dynamic model of xenon behavior in the Molten Salt Reactor Experiment. Ann. Nucl. Energy 144, 107535 (2020). https://doi.org/10.1016/j.anucene.2020.107535

    Article  Google Scholar 

  70. J.L. Huang, G.B. Jia, L.F. Han et al., Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system. Nucl. Sci. Tech. 35(2), 30 (2024). https://doi.org/10.1007/s41365-024-01394-5

    Article  Google Scholar 

  71. M.S. Greenwood, B.R. Betzler, A.L. Qualls et al., Demonstration of the advanced dynamic system modeling tool transform in a molten salt reactor application via a model of the molten salt demonstration reactor. Nucl. Technol. 206(3), 478–504 (2020). https://doi.org/10.1080/00295450.2019.1627124

    Article  ADS  Google Scholar 

  72. V. Pathirana, S.E. Creasman, O. Chvála et al., Molten salt reactor system dynamics in simulink and modelica, a code to code comparison. Nucl. Eng. Des. 413, 112484 (2023). https://doi.org/10.1016/j.nucengdes.2023.112484

    Article  Google Scholar 

  73. L. Fischer, L. Bureš, Application of modelica/transform to system modeling of the molten salt reactor experiment. Nucl. Eng. Des. 416, 112768 (2024). https://doi.org/10.1016/j.nucengdes.2023.112768

    Article  Google Scholar 

  74. D.M. Tartakovsky, M. Dentz, Diffusion in porous media: phenomena and mechanisms. Transp. Porous Med. 130(1), 105–127 (2019). https://doi.org/10.1007/s11242-019-01262-6

    Article  MathSciNet  Google Scholar 

  75. R.E. Thoma, Chemical aspects of MSRE operation (Oak Ridge National Lab., Oak Ridge, 1971). https://doi.org/10.2172/4675946

  76. S. Cantor, Density and viscosity of several molten fluoride mixtures (Oak Ridge National Lab., Oak Ridge, 1973). https://doi.org/10.2172/4419855

  77. W. Powers, S. Cohen, N. Greene, Physical properties of molten reactor fuels and coolants. Nucl. Sci. Eng. 17(2), 200–211 (1963)

    Article  ADS  Google Scholar 

  78. M.W. Rosenthal, P.N. Haubenreich, F.B. Briggs, Development status of molten-salt breeder reactors (Oak Ridge National Lab., Oak Ridge, 1972). https://doi.org/10.2172/4622532

  79. R.C. Robertson, MSRE design and operations report. Part I. Description of reactor design (Oak Ridge National Lab., Oak Ridge, 1965). https://doi.org/10.2172/4654707

  80. P.N. Haubenreich, J.R. Engel, B.E. Prince et al., MSRE design and operations report. Part iii. Nuclear analysis (Oak Ridge National Lab., Oak Ridge, 1964). https://doi.org/10.2172/4114686

  81. S. Cantor, J.W. Cooke, A.S. Dworkin et al., Physical properties of molten-salt reactor fuel, coolant, and flush salts (Oak Ridge National Lab., Oak Ridge, 1968). https://doi.org/10.2172/4492893

  82. J. Engel, P. Haubenreich, A. Houtzeel, Spray, mist, bubbles, and foam in the Molten Salt Reactor Experiment (Oak Ridge National Lab., Oak Ridge, 1970). https://doi.org/10.2172/4086308

  83. S.J. Ball, T.W. Kerlin, Stability analysis of the Molten-Salt Reactor Experiment (Oak Ridge National Lab., Oak Ridge, 1965). https://doi.org/10.2172/4591881

  84. J. Steffy, R C, P.J. Wood, Theoretical dynamic analysis of the MSRE with 233\(\text{U}\) fuel (Oak Ridge National Lab. , Oak Ridge, 1969). https://doi.org/10.2172/4771215

  85. S. Dulla, E.H. Mund, P. Ravetto, The quasi-static method revisited. Prog. Nucl. Energ. 50(8), 908–920 (2008). https://doi.org/10.1016/j.pnucene.2008.04.009

    Article  Google Scholar 

  86. J. Lewins, Nuclear reactor kinetics and control (Elsevier, 2013)

  87. D.N. Fry, R.C. Kryter, J.C. Robinson, Measurement of helium void fraction in the MSRE fuel salt using neutron noise analysis (Oak Ridge National Lab, Oak Ridge, 1968)

    Google Scholar 

  88. A. Cammi, V. Di Marcello, C. Guerrieri et al., Transfer function modeling of zero-power dynamics of circulating fuel reactors. J. Eng. Gas Turb. Power 133(5), (2010). https://doi.org/10.1115/1.4002880

  89. C. Guerrieri, A. Cammi, L. Luzzi, An approach to the MSR dynamics and stability analysis. Prog. Nucl. Energ. 67, 56–73 (2013). https://doi.org/10.1016/j.pnucene.2013.03.020

    Article  Google Scholar 

  90. B.J. Henderson, G.L. Ragan, Transfer functions for circulating-fuel reactors (Los Alamos National Lab., Los Alamos, 1967). https://doi.org/10.2172/4199597

  91. R.C. Dorf, R.H. Bishop, Modern control systems, 14thed (Pearson, 2021)

  92. R.L. Moore, MSRE design and operations report. Part IIB. Nuclear and process instrumentation (Oak Ridge National Lab., Oak Ridge, 1972). https://doi.org/10.2172/4630184

  93. T.L. Bergman, Fundamentals of heat and mass transfer (John Wiley & Sons, 2011)

    Google Scholar 

  94. J.R. Tallackson, MSRE design and operations report. Part IIA. Nuclear and process instrumentation (Oak Ridge National Lab. , Oak Ridge, 1968). https://doi.org/10.2172/4557999

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jia-Qi Chen. The first draft of the manuscript was written by Jia-Qi Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jia-Qi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was partly supported by the University of Shanghai for Science and Technology (No. 10-24-301-101).

Appendix

Appendix

The derivation begins with the one-dimensional heat conduction equation:

$$\begin{aligned} \frac{\partial T(t,x)}{\partial t} = \alpha _\text {th}\frac{\partial ^2T}{{\partial x}^2}. \end{aligned}$$
(15)

The measurement point was located at \(x=0\), whereas the boundary was located at \(x=L\). The boundary conditions are as follows:

$$\begin{aligned} \frac{\partial T}{\partial x}\Bigr \vert _{x=0}&= 0 \end{aligned}$$
(16)
$$\begin{aligned} \Bigr [k \frac{\partial T}{\partial x}\Bigr \vert _{x=L} + hT(t,L) - hT_{\infty }(t) \Bigr ]&= 0. \end{aligned}$$
(17)

By applying a Laplace transform on Eq.  (15), Eq. (16), and Eq.  (17), the following equations were obtained in the frequency domain:

$$\begin{aligned} \frac{\partial ^2{\tilde{T}}}{{\partial x}^2} - \frac{s}{\alpha _\text {th}} {\tilde{T}}&= 0, \end{aligned}$$
(18)
$$\begin{aligned} \frac{\partial {\tilde{T}}}{\partial x}\Bigr \vert _{x=0}&= 0 \end{aligned}$$
(19)
$$\begin{aligned} \Bigr [k \frac{\partial {\tilde{T}}}{\partial x}\Bigr \vert _{x=L} + h\tilde{T(L)} - h{\tilde{T}}_{\infty }(s) \Bigr ]&= 0. \end{aligned}$$
(20)

Equation (18) has a common solution when considering the boundary condition at \(x=0\),

$$\begin{aligned} {\tilde{T}} = {\tilde{C}}(s)\cosh \Bigl (\sqrt{\frac{s}{\alpha _\text {th}}} \Bigr ), \end{aligned}$$
(21)

Next, Eq. (21) is substituted into the boundary condition at \(x=L\) to obtain

$$\begin{aligned} \begin{aligned} -k{\tilde{C}}\sqrt{\frac{s}{\alpha _\text {th}}}\sinh \Bigl (\sqrt{\frac{s}{\alpha _\text {th}}}L\Bigr ) + h{\tilde{C}}\cosh \Bigl (\sqrt{\frac{s}{\alpha _\text {th}}}L\Bigr )&\\ = h{\tilde{T}}_\infty (s)&. \end{aligned} \end{aligned}$$
(22)

Now we rearrange Eq. (22) and note that \({\tilde{T}}(s,0)={\tilde{C}}(s)\), which is the temperature measurement in the frequency domain; thus, we have

$$\begin{aligned} & {\tilde{M}}(s) = \frac{{\tilde{C}}}{{\tilde{T}}_\infty }\nonumber \\ & =\Bigl [\cosh \Bigl (\sqrt{\frac{s}{\alpha _\text {th}}}L\Bigr ) - \frac{k}{h}\sqrt{\frac{s}{\alpha _\text {th}}} \sinh \Bigl (\sqrt{\frac{s}{\alpha _\text {th}}}L\Bigr )\Bigr ]^{-1} \end{aligned}$$
(23)

By replacing s with jw, the transfer function between the measured temperature and surrounding temperature is obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JQ., Brooks, C.S. Validation and application of a coupled xenon-transport and reactor dynamic model of Molten-salt reactor experiment. NUCL SCI TECH 36, 98 (2025). https://doi.org/10.1007/s41365-025-01680-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-025-01680-w

Keywords