Abstract
Based on the Skyrme energy density functional and reaction Q-value, this study proposed an effective nucleus-nucleus potential for describing the capture barrier in heavy-ion fusion processes. The 443 extracted barrier heights were well reproduced with a root-mean-square (RMS) error of 1.53 MeV, and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV. Coupled with the Siwek-Wilczyński formula, wherein three parameters were determined by the proposed effective potentials, the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations, such as 154Sm and 238U. The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr- and 64 Ni-induced reactions, which were related to the synthesis of new super-heavy nuclei.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00441 and https://www.doi.org/10.57760/sciencedb.j00186.00441.
References
S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000). https://doi.org/10.1103/RevModPhys.72.733
S. Hofmann, F.P. Hessberger, D. Ackermanna et al., Properties of heavy nuclei measured at the GSI SHIP. Nucl. Phys. A 734, 93–100 (2004). https://doi.org/10.1016/j.nuclphysa.2004.01.018
K. Morita, K. Morimoto, D. Kaji et al., Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn, n)278113. J. Phys. Soci. Japan 73, 2593–2596 (2004). https://doi.org/10.1143/jpsj.73.2593
Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions. Phys. Rev. C 74, 044602 (2006). https://doi.org/10.1103/PhysRevC.74.044602
Y.T. Oganessian, F.S. Abdullin, P.D. Bailey et al., Synthesis of a new element with atomic number \(Z=117\). Phys. Rev. Lett. 104, 142502 (2010). https://doi.org/10.1103/PhysRevLett.104.142502
Y.T. Oganessian, V.K. Utyonkov, Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 944, 62–98 (2015). https://doi.org/10.1016/j.nuclphysa.2015.07.003
Y.T. Oganessian, V.K. Utyonkov, N.D. Kovrizhnykh et al., First experiment at the super heavy element factory: high cross section of 288Mc in the 243Am+48Ca reaction and identification of the new isotope 264Lr. Phys. Rev. C 106, L031301 (2022). https://doi.org/10.1103/PhysRevC.106.L031301
A. Sobiczewski, Y.A. Litvinov, M. Palczewski, Detailed illustration of the accuracy of currently used nuclear-mass models. Atom. Data Nucl. Data Tables 119, 1–32 (2018). https://doi.org/10.1016/j.adt.2017.05.001
T. Tanaka, K. Morita, K. Morimoto et al., Study of quasielastic barrier distributions as a step towards the synthesis of superheavy elements with hot fusion reactions. Phys. Rev. Lett. 124, 052502 (2020). https://doi.org/10.1103/PhysRevLett.124.052502
K. Pomorski, B. Nerlo-Pomorska, J. Bartel et al., Stability of superheavy nuclei. Phys. Rev. C 97, 034319 (2018). https://doi.org/10.1103/PhysRevC.97.034319
G.G. Adamian, N.V. Antonenko, W. Scheid, Isotopic trends in the production of superheavy nuclei in cold fusion reactions. Phys. Rev. C 69, 011601(R) (2004). https://doi.org/10.1103/PhysRevC.69.011601
Y.Z. Wang, S.J. Wang, Z.Y. Hou et al., Systematic study of \(\alpha\)-decay energies and half-lives of superheavy nuclei. Phys. Rev. C 92, 064301 (2015). https://doi.org/10.1103/PhysRevC.92.064301
Z. Wang, Z.Z. Ren, Predictions of the decay properties of the superheavy nuclei 293,294119 and 294,295120. Nucl. Tech. 46, 080011 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080011. (in Chinese)
D.W. Guan, J.C. Pei, High quality microscopic nuclear masses of superheavy nuclei. Phys. Lett. B 851, 138578 (2024). https://doi.org/10.1016/j.physletb.2024.138578
Z.Y. Zhang, Z.G. Gan, H.B. Yang et al., New isotope 220Np: probing the robustness of the \(N=126\) shell closure in neptunium. Phys. Rev. Lett. 122, 192503 (2019). https://doi.org/10.1103/PhysRevLett.122.192503
Z.Y. Zhang, H.B. Yang, M.H. Huang et al., New \(\alpha\)-emitting isotope 214U and abnormal enhancement of \(\alpha\)-particle clustering in lightest uranium isotopes. Phys. Rev. Lett. 126, 152502 (2021). https://doi.org/10.1103/PhysRevLett.126.152502
H.B. Zhou, Z.G. Gan, N. Wang et al., Lifetime measurement for the isomeric state in 213Th. Phys. Rev. C 103, 044314 (2021). https://doi.org/10.1103/PhysRevC.103.044314
R.G. Stokstad, Y. Eisen, S. Kaplanis et al., Effect of nuclear deformation on heavy-ion fusion. Phys. Rev. Lett. 41, 465 (1978). https://doi.org/10.1103/PhysRevLett.41.465
V.V. Sargsyan, G.G. Adamian, N.V. Antonenko et al., Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies. Phys. Rev. C 84, 064614 (2011). https://doi.org/10.1103/PhysRevC.84.064614
H.M. Jia, C.J. Lin, F. Yang et al., Extracting the hexadecapole deformation from backward quasi-elastic scattering. Phys. Rev. C 90, 031601(R) (2014). https://doi.org/10.1103/PhysRevC.90.031601
L. Yang, C.J. Lin, H.M. Jia et al., Progress on nuclear reactions and related nuclear structure at low energies. Nucl. Tech. 46, 080006 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080006. (in Chinese)
M. Dasgupta, D.J. Hinde, N. Rowley et al., Measuring barriers to fusion. Annu. Rev. Nucl. Part. Sci. 48, 401–461 (1998). https://doi.org/10.1146/annurev.nucl.48.1.401
K. Hagino, N. Rowley, A.T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999). https://doi.org/10.1016/S0010-4655(99)00243-X
C.H. Dasso, S. Landowne, CCFUS—a simplified coupled-channel code for calculation of fusion cross sections in heavy-ion reactions. Comput. Phys. Commun. 46, 187–191 (1987). https://doi.org/10.1016/0010-4655(87)90045-2
V.I. Zagrebaev, Y. Aritomo, M.G. Itkis et al., Synthesis of superheavy nuclei: How accurately can we describe it and calculate the cross sections? Phys. Rev. C 65, 014607 (2001). https://doi.org/10.1103/PhysRevC.65.014607
K. Siwek-Wilczyńska, J. Wilczyński, Empirical nucleus-nucleus potential deduced from fusion excitation functions. Phys. Rev. C 69, 024611 (2004). https://doi.org/10.1103/PhysRevC.69.024611
M. Liu, N. Wang, Z.X. Li et al., Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers. Nucl. Phys. A 768, 80 (2006). https://doi.org/10.1016/j.nuclphysa.2006.01.011
N. Wang, M. Liu, Y.X. Yang, Heavy-ion fusion and scattering with Skyrme energy density functional. Sci. China Ser. G Phys. Mech. Astron. 52, 1554 (2009). https://doi.org/10.1007/s11433-009-0205-z
B. Wang, K. Wen, W.J. Zhao et al., Systematics of capture and fusion dynamics in heavy-ion collisions. At. Data Nucl. Data Tables 114, 281 (2017). https://doi.org/10.1016/j.adt.2016.06.003
C.L. Jiang, B.P. Kay, Heavy-ion fusion cross section formula and barrier height distribution. Phys. Rev. C 105, 064601 (2022). https://doi.org/10.1103/PhysRevC.105.064601
C.Y. Wong, Interaction barrier in charged-particle nuclear reactions. Rev. Lett. 31, 766 (1973). https://doi.org/10.1103/PhysRevLett.31.766
R. Bass, Fusion of heavy nuclei in a classical model. Nucl. Phys. A 231, 45 (1974). https://doi.org/10.1016/0375-9474(74)90292-9
R. Bass, Fusion reactions: successes and limitations of a one-dimensional description. in Lecture Notes in Physics, vol. 117, (Springer, Berlin, 1980), p. 281. https://doi.org/10.1007/3-540-09965-4_23
R.A. Broglia, A. Winther, Heavy Ion Reactions. Frontiers in Physics, vol. 84, (Addison-Wesley, 1991)
R.K. Puri, R.K. Gupta, Fusion barriers using the energy-density formalism: Simple analytical formula and the calculation of fusion cross sections. Phys. Rev. C 45, 1837 (1992). https://doi.org/10.1103/PhysRevC.45.1837
P.W. Wen, C.J. Lin, H.M. Jia et al., New Coulomb barrier scaling law with reference to the synthesis of superheavy elements. Phys. Rev. C 105, 034606 (2022). https://doi.org/10.1103/PhysRevC.105.034606
N. Wang, W. Scheid, Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Phys. Rev. C 78, 014607 (2008). https://doi.org/10.1103/PhysRevC.78.014607
D. Vautherin, D.M. Brink, Hartree-Fock calculations with Skyrme’s interaction. I. Spherical Nucl. Phys. Rev. C 5, 626 (1972). https://doi.org/10.1103/PhysRevC.5.626
M. Brack, C. Guet, H.-B. Hakanson, Self-consistent semiclassical description of average nuclear properties-a link between microscopic and macroscopic models. Phys. Rep. 123, 275 (1985). https://doi.org/10.1016/0370-1573(86)90078-5
J. Bartel, K. Bencheikh, Nuclear mean fields through self-consistent semiclassical calculations. Eur. Phys. J A14, 179 (2002). https://doi.org/10.1140/epja/i2000-10157-x
V.Y. Denisov, W. Noerenberg, Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A 15, 375 (2002). https://doi.org/10.1140/epja/i2002-10039-3
E.M. Kozulin, G.N. Knyazheva, I.M. Itkis et al., Investigation of the reaction 64Ni + 238U being an option of synthesizing element 120. Phys. Lett. B 686, 227 (2010). https://doi.org/10.1016/j.physletb.2010.02.041
M.G. Itkis, G.N. Knyazheva, I.M. Itkisa et al., Experimental investigation of cross sections for the production of heavy and superheavy nuclei. Eur. Phys. J. A 58, 178 (2022). https://doi.org/10.1140/epja/s10050-022-00806-7
N. Wang, J.L. Tian, W. Scheid, Systematics of fusion probability in “hot” fusion reactions. Phys. Rev. C. 84, 061601(R) (2011). https://doi.org/10.1103/PhysRevC.84.061601
G.G. Adamian, N.V. Antonenko, H. Lenske et al., Predictions of identification and production of new superheavy nuclei with Z=119 and 120. Phys. Rev. C 101, 034301 (2020). https://doi.org/10.1103/PhysRevC.101.034301
K.V. Novikov, E.M. Kozulin, G.N. Knyazheva et al., Investigation of fusion probabilities in the reactions with 52,54Cr,64Ni, and 68Zn ions leading to the formation of Z=120 superheavy composite systems. Phys. Rev. C 102, 044605 (2020). https://doi.org/10.1103/PhysRevC.102.044605
J.X. Li, H.F. Zhang, Possibility to synthesize Z\(>\)118 superheavy nuclei with 54Cr projectiles. Phys. Rev. C 108, 044604 (2023). https://doi.org/10.1103/PhysRevC.108.044604
S. Madhu, H.C. Manjunatha, N. Sowmya et al., Cr induced fusion reactions to synthesize superheavy elements. Nucl. Sci. Tech. 35, 90 (2024). https://doi.org/10.1007/s41365-024-01449-7
M.H. Zhang, Y.H. Zhang, J.J. Li et al., Progress in transport models of heavy-ion collisions for the synthesis of superheavy nuclei. Nucl. Tech. 46, 080014 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46. (in Chinese)
J.A. Maruhn, P.G. Reinhard, P.D. Stevenson et al., Spin-excitation mechanisms in Skyrme-force time-dependent Hartree-Fock calculations. Phys. Rev. C 74, 027601 (2006). https://doi.org/10.1103/PhysRevC.74.027601
L. Guo, J.A. Maruhn, P.G. Reinhard, Boost-invariant mean field approximation and the nuclear Landau-Zener effect. Phys. Rev. C 76, 014601 (2007). https://doi.org/10.1103/PhysRevC.76.014601
C. Simenel, Challenges in description of heavy-ion collisions with microscopic time-dependent approaches. J. Phys. G Nucl. Part. Phys. 41, 094007 (2014). https://doi.org/10.1088/0954-3899/41/9/094007
N. Wang, L. Ou, Y.X. Zhang, Z.X. Li, Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei. Phys. Rev. C 89, 064601 (2014). https://doi.org/10.1103/PhysRevC.89.064601
N. Wang, K. Zhao, Z.X. Li, Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model. Phys. ReV. C 90, 054610 (2014). https://doi.org/10.1103/PhysRevC.90.054610
H. Yao, H. Yang, N. Wang, Systematic study of capture thresholds with time dependent Hartree-Fock theory. Phys. Rev. C 110, 014602 (2024). https://doi.org/10.1103/PhysRevC.110.014602
H. Yao, C. Li, H.B. Zhou, N. Wang, Distinguishing fission-like events from deep-inelastic collisions. Phys. Rev. C 109, 034608 (2024). https://doi.org/10.1103/PhysRevC.109.034608
J. Bartel, Ph. Quentin, M. Brack et al., Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982). https://doi.org/10.1016/0375-9474(82)90403-1
G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl. Phys. A 627, 361 (1997). https://doi.org/10.1016/S0375-9474(97)00605-2
N. Wang, E.G. Zhao, W. Scheid, S.G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with trans-uranium targets. Phys. Rev. C 85, 041601R (2012). https://doi.org/10.1103/PhysRevC.85.041601
L. Zhu, J. Su, F.S. Zhang, Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions. Phys. Rev. C 93, 064610 (2016). https://doi.org/10.1103/PhysRevC.93.064610
M.H. Zhang, Y.H. Zhang, Y. Zou et al., Possibilities for the synthesis of Superheavy element in \(Z=121\) fusion reactions. Nucl. Sci. Tech. 35, 95 (2024). https://doi.org/10.1007/s41365-024-01452-y
Y. Chen, H. Yao, M. Liu et al., Systematic study of fusion barriers with energy dependent barrier radius. Atom. Data Nucl. Data Tables 154, 101587 (2023). https://doi.org/10.1016/j.adt.2023.101587
P. Stelson, Neutron flow between nuclei as the principal enhancement mechanism in heavy-ion sub-barrier fusion. Phys. Lett. B 205, 190 (1988). https://doi.org/10.1016/0370-2693(88)91647-4
N. Wang, T. Li, Nuclear deformation energies with the Weizsäcker-Skyrme mass model. Acta Phys. Polo. B Supp. 12, 715 (2019). https://doi.org/10.5506/APhysPolBSupp.12.715
N. Wang, M. Liu, X.Z. Wu, J. Meng, Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215 (2014). https://doi.org/10.1016/j.physletb.2014.05.049
X.H. Wu, Y.Y. Lu, P.W. Zhao, Multi-task learning on nuclear masses and separation energies with the kernel ridge regression. Phys. Lett. B 834, 137394 (2022). https://doi.org/10.1016/j.physletb.2022.137394
J.R. Leigh, M. Dasgupta, D.J. Hinde et al., Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W. Phys. Rev. C 52, 3151 (1995). https://doi.org/10.1103/PhysRevC.52.3151
P.R.S. Gomes, I.C. Charret, R. Wanis et al., Fusion of 32S+154Sm at sub-barrier energies. Phys. Re. C 49, 245 (1994). https://doi.org/10.1103/PhysRevC.49.245
K. Nishio, H. Ikezoe, I. Nishinaka et al., Evidence for quasifission in the sub-barrier reaction of 30Si+238U. Phys. Rev. C 82, 044604 (2010). https://doi.org/10.1103/PhysRevC.82.044604
M. Trotta, A.M. Stefanini, S. Beghini et al., Fusion hindrance and quasi-fission in 48Ca induced reactions. Eur. Phys. J. A 25, 615 (2005). https://doi.org/10.1140/epjad/i2005-06-084-2
K. Nishio, S. Mitsuoka, I. Nishinaka et al., Fusion probabilities in the reactions Ca+U at energies around the Coulomb barrier. Phys. Rev. C 86, 034608 (2012). https://doi.org/10.1103/PhysRevC.86.034608
J. Töke, B. Bock, G.X. Dai et al., Quasi-fission-The mass-drift mode in heavy-ion reactions. Nucl. Phys. A 440, 327 (1985). https://doi.org/10.1016/0375-9474(85)90344-6
Acknowledgements
Certain data tables on the capture barrier heights are available at http://www.imqmd.com/fusion/.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ning Wang and Jin-Ming Chen. The first draft of the manuscript was written by Ning Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
This work was supported by the National Natural Science Foundation of China (Nos. 12265006, 12375129, U1867212), the Innovation Project of Guangxi Graduate Education (No. YCSWYCSW2022176), and the Guangxi Natural Science Foundation (2017GXNSFGA198001).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, N., Chen, JM. & Liu, M. Effective nucleus-nucleus potentials for heavy-ion fusion reactions. NUCL SCI TECH 36, 24 (2025). https://doi.org/10.1007/s41365-024-01625-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41365-024-01625-9


