Skip to main content
Log in

Effective nucleus-nucleus potentials for heavy-ion fusion reactions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Based on the Skyrme energy density functional and reaction Q-value, this study proposed an effective nucleus-nucleus potential for describing the capture barrier in heavy-ion fusion processes. The 443 extracted barrier heights were well reproduced with a root-mean-square (RMS) error of 1.53 MeV, and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV. Coupled with the Siwek-Wilczyński formula, wherein three parameters were determined by the proposed effective potentials, the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations, such as 154Sm and 238U. The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr- and 64 Ni-induced reactions, which were related to the synthesis of new super-heavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00441 and https://www.doi.org/10.57760/sciencedb.j00186.00441.

References

  1. S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000). https://doi.org/10.1103/RevModPhys.72.733

    Article  ADS  MATH  Google Scholar 

  2. S. Hofmann, F.P. Hessberger, D. Ackermanna et al., Properties of heavy nuclei measured at the GSI SHIP. Nucl. Phys. A 734, 93–100 (2004). https://doi.org/10.1016/j.nuclphysa.2004.01.018

    Article  ADS  Google Scholar 

  3. K. Morita, K. Morimoto, D. Kaji et al., Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn, n)278113. J. Phys. Soci. Japan 73, 2593–2596 (2004). https://doi.org/10.1143/jpsj.73.2593

    Article  ADS  Google Scholar 

  4. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions. Phys. Rev. C 74, 044602 (2006). https://doi.org/10.1103/PhysRevC.74.044602

    Article  ADS  Google Scholar 

  5. Y.T. Oganessian, F.S. Abdullin, P.D. Bailey et al., Synthesis of a new element with atomic number \(Z=117\). Phys. Rev. Lett. 104, 142502 (2010). https://doi.org/10.1103/PhysRevLett.104.142502

    Article  ADS  Google Scholar 

  6. Y.T. Oganessian, V.K. Utyonkov, Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 944, 62–98 (2015). https://doi.org/10.1016/j.nuclphysa.2015.07.003

    Article  ADS  Google Scholar 

  7. Y.T. Oganessian, V.K. Utyonkov, N.D. Kovrizhnykh et al., First experiment at the super heavy element factory: high cross section of 288Mc in the 243Am+48Ca reaction and identification of the new isotope 264Lr. Phys. Rev. C 106, L031301 (2022). https://doi.org/10.1103/PhysRevC.106.L031301

    Article  ADS  Google Scholar 

  8. A. Sobiczewski, Y.A. Litvinov, M. Palczewski, Detailed illustration of the accuracy of currently used nuclear-mass models. Atom. Data Nucl. Data Tables 119, 1–32 (2018). https://doi.org/10.1016/j.adt.2017.05.001

    Article  ADS  MATH  Google Scholar 

  9. T. Tanaka, K. Morita, K. Morimoto et al., Study of quasielastic barrier distributions as a step towards the synthesis of superheavy elements with hot fusion reactions. Phys. Rev. Lett. 124, 052502 (2020). https://doi.org/10.1103/PhysRevLett.124.052502

    Article  ADS  MATH  Google Scholar 

  10. K. Pomorski, B. Nerlo-Pomorska, J. Bartel et al., Stability of superheavy nuclei. Phys. Rev. C 97, 034319 (2018). https://doi.org/10.1103/PhysRevC.97.034319

    Article  ADS  MATH  Google Scholar 

  11. G.G. Adamian, N.V. Antonenko, W. Scheid, Isotopic trends in the production of superheavy nuclei in cold fusion reactions. Phys. Rev. C 69, 011601(R) (2004). https://doi.org/10.1103/PhysRevC.69.011601

    Article  ADS  MATH  Google Scholar 

  12. Y.Z. Wang, S.J. Wang, Z.Y. Hou et al., Systematic study of \(\alpha\)-decay energies and half-lives of superheavy nuclei. Phys. Rev. C 92, 064301 (2015). https://doi.org/10.1103/PhysRevC.92.064301

    Article  ADS  MATH  Google Scholar 

  13. Z. Wang, Z.Z. Ren, Predictions of the decay properties of the superheavy nuclei 293,294119 and 294,295120. Nucl. Tech. 46, 080011 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080011. (in Chinese)

    Article  Google Scholar 

  14. D.W. Guan, J.C. Pei, High quality microscopic nuclear masses of superheavy nuclei. Phys. Lett. B 851, 138578 (2024). https://doi.org/10.1016/j.physletb.2024.138578

    Article  Google Scholar 

  15. Z.Y. Zhang, Z.G. Gan, H.B. Yang et al., New isotope 220Np: probing the robustness of the \(N=126\) shell closure in neptunium. Phys. Rev. Lett. 122, 192503 (2019). https://doi.org/10.1103/PhysRevLett.122.192503

    Article  ADS  Google Scholar 

  16. Z.Y. Zhang, H.B. Yang, M.H. Huang et al., New \(\alpha\)-emitting isotope 214U and abnormal enhancement of \(\alpha\)-particle clustering in lightest uranium isotopes. Phys. Rev. Lett. 126, 152502 (2021). https://doi.org/10.1103/PhysRevLett.126.152502

    Article  ADS  Google Scholar 

  17. H.B. Zhou, Z.G. Gan, N. Wang et al., Lifetime measurement for the isomeric state in 213Th. Phys. Rev. C 103, 044314 (2021). https://doi.org/10.1103/PhysRevC.103.044314

    Article  ADS  MATH  Google Scholar 

  18. R.G. Stokstad, Y. Eisen, S. Kaplanis et al., Effect of nuclear deformation on heavy-ion fusion. Phys. Rev. Lett. 41, 465 (1978). https://doi.org/10.1103/PhysRevLett.41.465

    Article  ADS  Google Scholar 

  19. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko et al., Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies. Phys. Rev. C 84, 064614 (2011). https://doi.org/10.1103/PhysRevC.84.064614

    Article  ADS  MATH  Google Scholar 

  20. H.M. Jia, C.J. Lin, F. Yang et al., Extracting the hexadecapole deformation from backward quasi-elastic scattering. Phys. Rev. C 90, 031601(R) (2014). https://doi.org/10.1103/PhysRevC.90.031601

    Article  ADS  Google Scholar 

  21. L. Yang, C.J. Lin, H.M. Jia et al., Progress on nuclear reactions and related nuclear structure at low energies. Nucl. Tech. 46, 080006 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080006. (in Chinese)

    Article  Google Scholar 

  22. M. Dasgupta, D.J. Hinde, N. Rowley et al., Measuring barriers to fusion. Annu. Rev. Nucl. Part. Sci. 48, 401–461 (1998). https://doi.org/10.1146/annurev.nucl.48.1.401

    Article  ADS  Google Scholar 

  23. K. Hagino, N. Rowley, A.T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999). https://doi.org/10.1016/S0010-4655(99)00243-X

    Article  ADS  MATH  Google Scholar 

  24. C.H. Dasso, S. Landowne, CCFUS—a simplified coupled-channel code for calculation of fusion cross sections in heavy-ion reactions. Comput. Phys. Commun. 46, 187–191 (1987). https://doi.org/10.1016/0010-4655(87)90045-2

    Article  ADS  MATH  Google Scholar 

  25. V.I. Zagrebaev, Y. Aritomo, M.G. Itkis et al., Synthesis of superheavy nuclei: How accurately can we describe it and calculate the cross sections? Phys. Rev. C 65, 014607 (2001). https://doi.org/10.1103/PhysRevC.65.014607

    Article  ADS  MATH  Google Scholar 

  26. K. Siwek-Wilczyńska, J. Wilczyński, Empirical nucleus-nucleus potential deduced from fusion excitation functions. Phys. Rev. C 69, 024611 (2004). https://doi.org/10.1103/PhysRevC.69.024611

    Article  ADS  Google Scholar 

  27. M. Liu, N. Wang, Z.X. Li et al., Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers. Nucl. Phys. A 768, 80 (2006). https://doi.org/10.1016/j.nuclphysa.2006.01.011

    Article  ADS  MATH  Google Scholar 

  28. N. Wang, M. Liu, Y.X. Yang, Heavy-ion fusion and scattering with Skyrme energy density functional. Sci. China Ser. G Phys. Mech. Astron. 52, 1554 (2009). https://doi.org/10.1007/s11433-009-0205-z

    Article  ADS  MATH  Google Scholar 

  29. B. Wang, K. Wen, W.J. Zhao et al., Systematics of capture and fusion dynamics in heavy-ion collisions. At. Data Nucl. Data Tables 114, 281 (2017). https://doi.org/10.1016/j.adt.2016.06.003

    Article  ADS  MATH  Google Scholar 

  30. C.L. Jiang, B.P. Kay, Heavy-ion fusion cross section formula and barrier height distribution. Phys. Rev. C 105, 064601 (2022). https://doi.org/10.1103/PhysRevC.105.064601

    Article  ADS  Google Scholar 

  31. C.Y. Wong, Interaction barrier in charged-particle nuclear reactions. Rev. Lett. 31, 766 (1973). https://doi.org/10.1103/PhysRevLett.31.766

    Article  ADS  MATH  Google Scholar 

  32. R. Bass, Fusion of heavy nuclei in a classical model. Nucl. Phys. A 231, 45 (1974). https://doi.org/10.1016/0375-9474(74)90292-9

    Article  ADS  MATH  Google Scholar 

  33. R. Bass, Fusion reactions: successes and limitations of a one-dimensional description. in Lecture Notes in Physics, vol. 117, (Springer, Berlin, 1980), p. 281. https://doi.org/10.1007/3-540-09965-4_23

  34. R.A. Broglia, A. Winther, Heavy Ion Reactions. Frontiers in Physics, vol. 84, (Addison-Wesley, 1991)

  35. R.K. Puri, R.K. Gupta, Fusion barriers using the energy-density formalism: Simple analytical formula and the calculation of fusion cross sections. Phys. Rev. C 45, 1837 (1992). https://doi.org/10.1103/PhysRevC.45.1837

    Article  ADS  MATH  Google Scholar 

  36. P.W. Wen, C.J. Lin, H.M. Jia et al., New Coulomb barrier scaling law with reference to the synthesis of superheavy elements. Phys. Rev. C 105, 034606 (2022). https://doi.org/10.1103/PhysRevC.105.034606

    Article  ADS  Google Scholar 

  37. N. Wang, W. Scheid, Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Phys. Rev. C 78, 014607 (2008). https://doi.org/10.1103/PhysRevC.78.014607

    Article  ADS  MATH  Google Scholar 

  38. D. Vautherin, D.M. Brink, Hartree-Fock calculations with Skyrme’s interaction. I. Spherical Nucl. Phys. Rev. C 5, 626 (1972). https://doi.org/10.1103/PhysRevC.5.626

    Article  ADS  MATH  Google Scholar 

  39. M. Brack, C. Guet, H.-B. Hakanson, Self-consistent semiclassical description of average nuclear properties-a link between microscopic and macroscopic models. Phys. Rep. 123, 275 (1985). https://doi.org/10.1016/0370-1573(86)90078-5

    Article  ADS  Google Scholar 

  40. J. Bartel, K. Bencheikh, Nuclear mean fields through self-consistent semiclassical calculations. Eur. Phys. J A14, 179 (2002). https://doi.org/10.1140/epja/i2000-10157-x

    Article  ADS  MATH  Google Scholar 

  41. V.Y. Denisov, W. Noerenberg, Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A 15, 375 (2002). https://doi.org/10.1140/epja/i2002-10039-3

    Article  ADS  MATH  Google Scholar 

  42. E.M. Kozulin, G.N. Knyazheva, I.M. Itkis et al., Investigation of the reaction 64Ni + 238U being an option of synthesizing element 120. Phys. Lett. B 686, 227 (2010). https://doi.org/10.1016/j.physletb.2010.02.041

    Article  ADS  Google Scholar 

  43. M.G. Itkis, G.N. Knyazheva, I.M. Itkisa et al., Experimental investigation of cross sections for the production of heavy and superheavy nuclei. Eur. Phys. J. A 58, 178 (2022). https://doi.org/10.1140/epja/s10050-022-00806-7

    Article  ADS  Google Scholar 

  44. N. Wang, J.L. Tian, W. Scheid, Systematics of fusion probability in “hot” fusion reactions. Phys. Rev. C. 84, 061601(R) (2011). https://doi.org/10.1103/PhysRevC.84.061601

    Article  ADS  Google Scholar 

  45. G.G. Adamian, N.V. Antonenko, H. Lenske et al., Predictions of identification and production of new superheavy nuclei with Z=119 and 120. Phys. Rev. C 101, 034301 (2020). https://doi.org/10.1103/PhysRevC.101.034301

    Article  ADS  MATH  Google Scholar 

  46. K.V. Novikov, E.M. Kozulin, G.N. Knyazheva et al., Investigation of fusion probabilities in the reactions with 52,54Cr,64Ni, and 68Zn ions leading to the formation of Z=120 superheavy composite systems. Phys. Rev. C 102, 044605 (2020). https://doi.org/10.1103/PhysRevC.102.044605

    Article  ADS  Google Scholar 

  47. J.X. Li, H.F. Zhang, Possibility to synthesize Z\(>\)118 superheavy nuclei with 54Cr projectiles. Phys. Rev. C 108, 044604 (2023). https://doi.org/10.1103/PhysRevC.108.044604

    Article  ADS  Google Scholar 

  48. S. Madhu, H.C. Manjunatha, N. Sowmya et al., Cr induced fusion reactions to synthesize superheavy elements. Nucl. Sci. Tech. 35, 90 (2024). https://doi.org/10.1007/s41365-024-01449-7

    Article  Google Scholar 

  49. M.H. Zhang, Y.H. Zhang, J.J. Li et al., Progress in transport models of heavy-ion collisions for the synthesis of superheavy nuclei. Nucl. Tech. 46, 080014 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46. (in Chinese)

    Article  MATH  Google Scholar 

  50. J.A. Maruhn, P.G. Reinhard, P.D. Stevenson et al., Spin-excitation mechanisms in Skyrme-force time-dependent Hartree-Fock calculations. Phys. Rev. C 74, 027601 (2006). https://doi.org/10.1103/PhysRevC.74.027601

    Article  ADS  MATH  Google Scholar 

  51. L. Guo, J.A. Maruhn, P.G. Reinhard, Boost-invariant mean field approximation and the nuclear Landau-Zener effect. Phys. Rev. C 76, 014601 (2007). https://doi.org/10.1103/PhysRevC.76.014601

    Article  ADS  MATH  Google Scholar 

  52. C. Simenel, Challenges in description of heavy-ion collisions with microscopic time-dependent approaches. J. Phys. G Nucl. Part. Phys. 41, 094007 (2014). https://doi.org/10.1088/0954-3899/41/9/094007

    Article  ADS  Google Scholar 

  53. N. Wang, L. Ou, Y.X. Zhang, Z.X. Li, Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei. Phys. Rev. C 89, 064601 (2014). https://doi.org/10.1103/PhysRevC.89.064601

    Article  ADS  Google Scholar 

  54. N. Wang, K. Zhao, Z.X. Li, Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model. Phys. ReV. C 90, 054610 (2014). https://doi.org/10.1103/PhysRevC.90.054610

    Article  ADS  Google Scholar 

  55. H. Yao, H. Yang, N. Wang, Systematic study of capture thresholds with time dependent Hartree-Fock theory. Phys. Rev. C 110, 014602 (2024). https://doi.org/10.1103/PhysRevC.110.014602

    Article  MATH  Google Scholar 

  56. H. Yao, C. Li, H.B. Zhou, N. Wang, Distinguishing fission-like events from deep-inelastic collisions. Phys. Rev. C 109, 034608 (2024). https://doi.org/10.1103/PhysRevC.109.034608

    Article  ADS  Google Scholar 

  57. J. Bartel, Ph. Quentin, M. Brack et al., Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982). https://doi.org/10.1016/0375-9474(82)90403-1

    Article  ADS  Google Scholar 

  58. G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl. Phys. A 627, 361 (1997). https://doi.org/10.1016/S0375-9474(97)00605-2

    Article  ADS  MATH  Google Scholar 

  59. N. Wang, E.G. Zhao, W. Scheid, S.G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with trans-uranium targets. Phys. Rev. C 85, 041601R (2012). https://doi.org/10.1103/PhysRevC.85.041601

    Article  ADS  Google Scholar 

  60. L. Zhu, J. Su, F.S. Zhang, Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions. Phys. Rev. C 93, 064610 (2016). https://doi.org/10.1103/PhysRevC.93.064610

    Article  ADS  MATH  Google Scholar 

  61. M.H. Zhang, Y.H. Zhang, Y. Zou et al., Possibilities for the synthesis of Superheavy element in \(Z=121\) fusion reactions. Nucl. Sci. Tech. 35, 95 (2024). https://doi.org/10.1007/s41365-024-01452-y

    Article  MATH  Google Scholar 

  62. Y. Chen, H. Yao, M. Liu et al., Systematic study of fusion barriers with energy dependent barrier radius. Atom. Data Nucl. Data Tables 154, 101587 (2023). https://doi.org/10.1016/j.adt.2023.101587

    Article  MATH  Google Scholar 

  63. P. Stelson, Neutron flow between nuclei as the principal enhancement mechanism in heavy-ion sub-barrier fusion. Phys. Lett. B 205, 190 (1988). https://doi.org/10.1016/0370-2693(88)91647-4

    Article  ADS  MATH  Google Scholar 

  64. N. Wang, T. Li, Nuclear deformation energies with the Weizsäcker-Skyrme mass model. Acta Phys. Polo. B Supp. 12, 715 (2019). https://doi.org/10.5506/APhysPolBSupp.12.715

    Article  MATH  Google Scholar 

  65. N. Wang, M. Liu, X.Z. Wu, J. Meng, Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215 (2014). https://doi.org/10.1016/j.physletb.2014.05.049

    Article  ADS  MATH  Google Scholar 

  66. X.H. Wu, Y.Y. Lu, P.W. Zhao, Multi-task learning on nuclear masses and separation energies with the kernel ridge regression. Phys. Lett. B 834, 137394 (2022). https://doi.org/10.1016/j.physletb.2022.137394

    Article  Google Scholar 

  67. J.R. Leigh, M. Dasgupta, D.J. Hinde et al., Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W. Phys. Rev. C 52, 3151 (1995). https://doi.org/10.1103/PhysRevC.52.3151

    Article  ADS  MATH  Google Scholar 

  68. P.R.S. Gomes, I.C. Charret, R. Wanis et al., Fusion of 32S+154Sm at sub-barrier energies. Phys. Re. C 49, 245 (1994). https://doi.org/10.1103/PhysRevC.49.245

    Article  ADS  Google Scholar 

  69. K. Nishio, H. Ikezoe, I. Nishinaka et al., Evidence for quasifission in the sub-barrier reaction of 30Si+238U. Phys. Rev. C 82, 044604 (2010). https://doi.org/10.1103/PhysRevC.82.044604

    Article  ADS  Google Scholar 

  70. M. Trotta, A.M. Stefanini, S. Beghini et al., Fusion hindrance and quasi-fission in 48Ca induced reactions. Eur. Phys. J. A 25, 615 (2005). https://doi.org/10.1140/epjad/i2005-06-084-2

    Article  Google Scholar 

  71. K. Nishio, S. Mitsuoka, I. Nishinaka et al., Fusion probabilities in the reactions Ca+U at energies around the Coulomb barrier. Phys. Rev. C 86, 034608 (2012). https://doi.org/10.1103/PhysRevC.86.034608

    Article  ADS  MATH  Google Scholar 

  72. J. Töke, B. Bock, G.X. Dai et al., Quasi-fission-The mass-drift mode in heavy-ion reactions. Nucl. Phys. A 440, 327 (1985). https://doi.org/10.1016/0375-9474(85)90344-6

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Certain data tables on the capture barrier heights are available at http://www.imqmd.com/fusion/.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ning Wang and Jin-Ming Chen. The first draft of the manuscript was written by Ning Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ning Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12265006, 12375129, U1867212), the Innovation Project of Guangxi Graduate Education (No. YCSWYCSW2022176), and the Guangxi Natural Science Foundation (2017GXNSFGA198001).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Chen, JM. & Liu, M. Effective nucleus-nucleus potentials for heavy-ion fusion reactions. NUCL SCI TECH 36, 24 (2025). https://doi.org/10.1007/s41365-024-01625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01625-9

Keywords