Skip to main content
Log in

ID effects on beam dynamics in the SSRF-U storage ring

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This paper introduces the proposed insertion device (ID) scheme for the Shanghai Synchrotron Radiation Facility Upgrade. Based on this scheme, the influences of the ID radiation on the intra-beam scattering emittance and energy spread were evaluated. Optical distortion caused by the IDs was comprehensively examined and compensated using both local and global corrections. Subsequently, a frequency map analysis method was used to identify potentially dangerous resonance lines. In addition, the dynamic aperture, energy acceptance, and Touschek lifetime were calculated after considering high-order magnetic field errors to ensure that the ID effect did not affect the operation of the storage ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00088 and https://cstr.cn/31253.11.sciencedb.j00186.00088.

References

  1. H.J. Xu, Z.T. Zhao, Current status and progresses of SSRF project. Nucl. Sci. Tech. 19, 1–6 (2008). https://doi.org/10.1016/S1001-8042(08)60013-5

    Article  Google Scholar 

  2. X. Wu, S.Q. Tian, X.Z. Liu et al., Design and commissioning of the new SSRF storage ring lattice with asymmetric optics. Nucl. Instrum. Methods Phys. Res. A 1025, 166098 (2022). https://doi.org/10.1016/j.nima.2021.166098

    Article  Google Scholar 

  3. X.Z. Liu, S.Q. Tian, X. Wu et al., Intra-beam scattering and beam lifetime in a candidate lattice of the soft X-ray diffraction-limited storage ring for the upgraded SSRF. Nucl. Sci. Tech. 32, 83 (2021). https://doi.org/10.1007/s41365-021-00913-y

    Article  Google Scholar 

  4. Z.T. Zhao, L.X. Yin, Y.B. Leng et al., Consideration on the future major upgrades of the SSRF storage ring. in Proceedings of IPAC2015, Richmond, VA, USA. TUPJE023, pp. 1672–1674 (2015). https://doi.org/10.18429/JACoW-IPAC2015-TUPJE023

  5. F. Sannibale, S.C. Leemann, H. Nishimura et al., Compensation of insertion device induced emittance variations in ultralow emittance storage rings. in Proceedings of IPAC2018, Vancouver, BC, Canada. WEXGBE2, pp. 1751–1754 (2018). https://doi.org/10.18429/JACoW-IPAC2018-WEXGBE2

  6. H.T. Li, B. Zhao, X.Z. Zhang et al., Development of a portable laser heating device for synchrotron radiation in situ experiment. Nucl. Tech. 46, 020101 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.020101. (in Chinese)

    Article  Google Scholar 

  7. H.Z. Liu, J. Li, S.Q. Gu et al., Upgrade of transmission XAFS data acquisition system upgrade of Shanghai Synchrotron Radiation Facility BL14W1 beamline station. Nucl. Tech. 45, 070103 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.070103. (in Chinese)

    Article  Google Scholar 

  8. S.Q. Gu, B.B. Mei, Z. Jiang et al., Data acquisition system of a von Hamos X-ray emission spectrometer based on PILATUS detector. Nucl. Tech. 45, 090101 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.090101. (in Chinese)

    Article  Google Scholar 

  9. F. Sannibale, M. Ehrlichman, T. Hellert et al., Compensation of insertion device induced emittance variations in ultralow emittance storage rings by a dispersion bump in a wiggler. in Proceedings of IPAC2019, Melbourne, Australia. TUPGW093, pp. 1627–1630 (2019). https://doi.org/10.18429/JACoW-IPAC2019-TUPGW093

  10. D. Hidas, T. Shaftan, T. Tanabe, Emittance and energy spread compensation for current and future low emittance synchrotron light sources. Phys. Rev. Accel. Beams 24, 081601 (2021). https://doi.org/10.1103/PhysRevAccelBeams.24.081601

    Article  ADS  Google Scholar 

  11. T. Hiraiwa, K. Soutome, H. Tanaka, Suppression of emittance variation in extremely low emittance light source storage rings. Phys. Rev. Accel. Beams 25, 040703 (2022). https://doi.org/10.1103/PhysRevAccelBeams.25.040703

    Article  ADS  Google Scholar 

  12. Y.M. Zhou, X.Y. Xu, Y.B. Leng, Precise measurement and application of synchrotron tune at storage ring. Nucl. Tech. (in Chinese) 44, 090103 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.090103

    Article  Google Scholar 

  13. X.Z. Liu, S.Q. Tian, X. Wu et al., Feedforward compensation of the insertion devices effects in the SSRF storage ring. Nucl. Sci. Tech. 33, 70 (2022). https://doi.org/10.1007/s41365-022-01052-8

    Article  Google Scholar 

  14. S.Q. Tian, G.M. Liu, W.Z. Zhang et al., Calibration of the linear optics in the SSRF storage ring. Nucl. Sci. Tech. 19, 257–265 (2008). https://doi.org/10.1016/S1001-8042(09)60001-4

    Article  Google Scholar 

  15. J. Bahrdt, W. Frentrup, A. Gaupp, et al., Shimming of the Dynamic field integrals of the BESSY II U115 hybrid undulator. In Proceedings of IPAC2011, San Sebastián, Spain. THPC154, pp. 3248–3250 (2011).

  16. B. Singh, R. Bartolini, R. Fielder et al. Active shimming of dynamic multipoles of an APPLE II undulator in the DIAMOND storage ring. In Proceedings of IPAC2013, Shanghai, China. TUPWO057, pp. 1997–1999 (2013).

  17. J. Safranek, Experimental determination of storage ring optics using orbit response measurements. Nucl. Instrum. Methods Phys. Res. A 388, 27–36 (1997). https://doi.org/10.1016/S0168-9002(97)00309-4

    Article  ADS  Google Scholar 

  18. P. Elleaume, A new approach to the electron beam dynamics in undulators and wigglers. in Proceedings of EPAC1992, Berlin, Germany, pp. 661–664 (1992).

  19. Y.K. Wu, E. Forest, D.S. Robin, Explicit symplectic integrator for s-dependent static magnetic field. Phys. Rev. E 68, 046502 (2003). https://doi.org/10.1103/PhysRevE.68.046502

    Article  ADS  Google Scholar 

  20. M. Borland, ELEGANT: A flexible SDDS-compliant code for accelerator simulation. Argonne National Lab., USA (2000). https://doi.org/10.2172/761286

  21. A. Terebilo, Accelerator toolbox for MATLAB, SLAC National Accelerator Lab., Menlo Park, CA, USA (2001). https://doi.org/10.2172/784910

  22. P.K. Den Hartog, G.A. Decher, L.J. Emery, Dual canted undulators at the advanced photon source. in: Proc. PAC03, Portland, Oregon U.S.A. MPPB004, pp. 833–835 (2003).

  23. A. Ropert, High brilliance lattices and the effects of insertion devices. CERN, pp. 158–194 (1990). https://doi.org/10.5170/CERN-1990-003.158

  24. Z.G. Zhang, Y.B. Zhao, K. Xu et al., Low level radio frequency controller for superconducting third harmonic cavity at SSRF. Nucl. Tech. 45, 120101 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.120101(inChinese)

    Article  Google Scholar 

  25. J.D. Bjorken, S.K. Mtingwa, Intrabeam scattering. Part. Accel. 13, 115–143 (1983)

    Google Scholar 

  26. L.Y. Tan, S.Q. Tian, X.Z. Liu et al., Emittance and energy spread compensation in future synchrotron light sources. Nucl. Instrum. Methods Phys. Res. A 1052, 168278 (2023). https://doi.org/10.1016/j.nima.2023.168278

    Article  Google Scholar 

  27. T. Tanaka, H. Kitamura, SPECTRA: a synchrotron radiation calculation code. J. Sync. Radiat. 8, 1221–1228 (2001)

    Article  Google Scholar 

  28. B. Wang, Y. L. Zhao, Z. Duan et al., Progress of the first-turn commission simulations for HEPS, in Proceedings of IPAC2021, Campinas, SP, Brazil, TUPAB008, pp. 1349–1351 (2021).

  29. H.S. Dumas, J. Laskar, Global dynamics and long-time stability in Hamiltonian systems via numerical frequency analysis. Phys. Rev. Lett. 70, 2975 (1993). https://doi.org/10.1103/PhysRevLett.70.2975

    Article  ADS  Google Scholar 

  30. D. Robin, C. Steier, J. Laskar et al., Global dynamics of the Advanced Light Source revealed through experimental frequency map analysis. Phys. Rev. Lett. 85, 558 (2000). https://doi.org/10.1103/PhysRevLett.85.558

    Article  ADS  Google Scholar 

  31. J. Laskar, Frequency map analysis and particle accelerators. in Proceedings of PAC2003, Portland, Oregon, USA, pp. 378–382 (2003). https://doi.org/10.1109/PAC.2003.1288929

  32. S.Q. Tian, G.M. Liu, H.H. Li et al., Nonlinear optimization of the modern synchrotron radiation storage ring based on frequency map analysis. Chin. Phys. C 33, 127 (2009). https://doi.org/10.1088/1674-1137/33/2/011

    Article  ADS  Google Scholar 

  33. S.Q. Tian, G.M. Liu, H.H. Li et al., Tune optimization of the third-generation light source storage ring based on Frequency Map Analysis. Chin. Phys. C 33, 224 (2009). https://doi.org/10.1088/1674-1137/33/3/012

    Article  ADS  Google Scholar 

  34. Y. Jiao, S.X. Fang, Q. Qin et al., Tune optimization of modern light sources. Nucl. Instrum. Methods Phys. Res. A 566, 270–280 (2006). https://doi.org/10.1016/j.nima.2006.07.056

    Article  ADS  Google Scholar 

  35. Y. Jiao, Z. Duan, Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source. Nucl. Instrum. Methods Phys. Res. A 841, 97–103 (2017). https://doi.org/10.1016/j.nima.2016.10.037

    Article  ADS  Google Scholar 

  36. A. Piwinski, The Touschek Effect in Strong Focusing Storage Rings. Cern Library Record (1999). https://arxiv.org/pdf/physics/9903034.pdf

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Li-Yuan Tan, Shun-Qiang Tian, and Xin-Zhong Liu. The first draft of the manuscript was written by Li-Yuan Tan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shun-Qiang Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, LY., Tian, SQ., Liu, XZ. et al. ID effects on beam dynamics in the SSRF-U storage ring. NUCL SCI TECH 34, 174 (2023). https://doi.org/10.1007/s41365-023-01322-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01322-z

Keywords

Navigation