Skip to main content
Log in

Decomposition of fissile isotope antineutrino spectra using convolutional neural network

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Recent reactor antineutrino experiments have observed that the neutrino spectrum changes with the reactor core evolution and that the individual fissile isotope antineutrino spectra can be decomposed from the evolving data, providing valuable information for the reactor model and data inconsistent problems. We propose a machine learning method by building a convolutional neural network based on a virtual experiment with a typical short-baseline reactor antineutrino experiment configuration: by utilizing the reactor evolution information, the major fissile isotope spectra are correctly extracted, and the uncertainties are evaluated using the Monte Carlo method. Validation tests show that the method is unbiased and introduces tiny extra uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available upon request in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00075 and https://cstr.cn/31253.11.sciencedb.j00186.00075

References

  1. Th.A. Mueller, D. Lhuillier, M. Fallot et al., Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011). https://doi.org/10.1103/PhysRevC.83.054615

    Article  ADS  Google Scholar 

  2. P. Huber, Determination of antineutrino spectra from nuclear reactors. Phys. Rev. C 84, 024617 (2011). https://doi.org/10.1103/PhysRevC.84.024617

    Article  ADS  Google Scholar 

  3. G. Mention, M. Fechner, Th. Lasserre et al., Reactor antineutrino anomaly. Phys. Rev. D 83, 073006 (2011). https://doi.org/10.1103/PhysRevD.83.073006

    Article  ADS  Google Scholar 

  4. Y. Abe, J.C. dos Anjos, J.C. Barriere et al., Improved measurements of the neutrino mixing angle \(\theta _{13}\) with the Double Chooz detector. J. High Energy Phys. 2014, 86 (2014). https://doi.org/10.1007/JHEP10(2014)086

    Article  Google Scholar 

  5. S.H. Seo et al., (RENO Collaboration), New results from RENO and the 5 MeV excess. AIP Conf. Proc. 1666, 080002 (2015). https://doi.org/10.1063/1.4915563

    Article  Google Scholar 

  6. F.P. An, A.B. Balantekin, H.R. Band et al., (Daya Bay Collaboration), Measurement of the reactor antineutrino flux and spectrum at Daya Bay. Phys. Rev. Lett. 116, 061801 (2016). https://doi.org/10.1103/PhysRevLett.116.061801

    Article  ADS  Google Scholar 

  7. F.P. An, A.B. Balantekin, H.R. Band et al., (Daya Bay Collaboration), Evolution of the reactor antineutrino flux and spectrum at Daya Bay. Phys. Rev. Lett. 118, 251801 (2017). https://doi.org/10.1103/PhysRevLett.118.251801

  8. J. Ashenfelter, A.B. Balantekin, H.R. Band et al., (PROSPECT Collaboration), Measurement of the antineutrino spectrum from \(^{235}{\rm U }\) fission at HFIR with PROSPECT. Phys. Rev. Lett. 122, 251801 (2019). https://doi.org/10.1103/PhysRevLett.122.251801

    Article  ADS  Google Scholar 

  9. M. Estienne, M. Fallot, A. Algora et al., Updated summation model: an improved agreement with the Daya Bay antineutrino fluxes. Phys. Rev. Lett. 123, 022502 (2019). https://doi.org/10.1103/PhysRevLett.123.022502

    Article  ADS  Google Scholar 

  10. D. Adey, F.P. An, A.B. Balantekin et al., (Daya Bay Collaboration), Extraction of the \(^{235}{\rm U }\) and \(^{239}{\rm Pu}\) antineutrino spectra at Daya Bay. Phys. Rev. Lett. 123, 111801 (2019). https://doi.org/10.1103/PhysRevLett.123.111801

    Article  ADS  Google Scholar 

  11. Technical meeting on nuclear data for antineutrino spectra and their applications, 23–26 Apr 2019, Vienna, Austria. https://www.iaea.org/events/evt1703666

  12. N.S. Bowden, J.M. Link, W. Wang, Report of the topical group on neutrino applications for Snowmass (2021). https://doi.org/10.48550/arXiv.2209.07483

    Article  Google Scholar 

  13. O. Akindele, N. Bowden, R. Carr et al., Nu tools: exploring practical roles for neutrinos in nuclear energy and security. https://doi.org/10.48550/arXiv.2112.12593

  14. D. Bhatt, C. Patel, H. Talsania et al., CNN variants for computer vision: history, architecture, application, challenges and future scope. Electronics 10, 2470 (2021). https://doi.org/10.3390/electronics10202470

    Article  Google Scholar 

  15. Y.T. Luo, H. Du, Y.M. Yan, MeshCNN-based BREP to CSG conversion algorithm for 3D CAD models and its application. Nucl. Sci. Tech. 33, 74 (2022). https://doi.org/10.1007/s41365-022-01063-5

    Article  Google Scholar 

  16. X.Y. Guo, L. Zhang, Y.X. Xing, Study on analytical noise propagation in convolutional neural network methods used in computed tomography imaging. Nucl. Sci. Tech. 33, 77 (2022). https://doi.org/10.1007/s41365-022-01057-3

    Article  Google Scholar 

  17. L.Y. Zhou, H. Zha, J.R. Shi et al., A non-invasive diagnostic method of cavity detuning based on a convolutional neural network. Nucl. Sci. Tech. 33, 94 (2022). https://doi.org/10.1007/s41365-022-01069-z

    Article  Google Scholar 

  18. D. Ribli, B.Á. Pataki, J.M. Zorrilla Matilla et al., Weak lensing cosmology with convolutional neural networks on noisy data. Mon. Not. R. Astron. Soc. 490, 1843 (2019). https://doi.org/10.1093/mnras/stz2610

    Article  ADS  Google Scholar 

  19. C.M. Bishop, N.M. Nasser, Pattern recognition and machine learning, Vol. 4. No. 4. (New York: springer, 2006)

  20. F.P. An, A.B. Balantekin, H.R. Band et al., (Daya Bay Collaboration), Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay. Chin. Phys. C 41, 013002 (2017). https://doi.org/10.1088/1674-1137/41/1/013002

    Article  ADS  Google Scholar 

  21. X.B. Ma, W.L. Zhong, L.Z. Wang et al., Improved calculation of the energy release in neutron-induced fission. Phys. Rev. C 88, 014605 (2013). https://doi.org/10.1103/PhysRevC.88.014605

    Article  ADS  Google Scholar 

  22. J.Y. Shi, Q.L. Huang, L. Wang et al. (2022) Distributed data processing platform of national high energy physics data center. Front. Data Comput. 4, 97. https://doi.org/10.11871/jfdc.issn.2096-742X.2022.01.008(in Chinese)

  23. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015). https://www.iclr.cc/archive/www/2015.html

  24. S. Ruder, An overview of gradient descent optimization algorithms. https://doi.org/10.48550/arXiv.1609.04747

Download references

Acknowledgements

The authors would like to thank Prof. Zhi-Bing Li (School of Physics, Sun Yat-sen University) for useful discussion during the course of this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yu-Da Zeng, guided by Feng-Peng An and Wei Wang. The first draft of the manuscript was written by Yu-Da Zeng, Feng-Peng An and Wei Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng-Peng An.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11675273 and 12075087) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA10011102).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, YD., Wang, J., Zhao, R. et al. Decomposition of fissile isotope antineutrino spectra using convolutional neural network. NUCL SCI TECH 34, 79 (2023). https://doi.org/10.1007/s41365-023-01229-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01229-9

Keywords

Navigation