Skip to main content

Advertisement

Log in

A characterization study on perovskite X-ray detector performance based on a digital radiography system

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

X-ray imaging technologies such as digital radiography (DR), is an important aspect of modern non-destructive testing and medical diagnosis. Innovative flexible X-ray detector technologies have recently been proposed and are now receiving increasing attention owing to their superior material flexibility compared with traditional flat-panel detectors. This work aims to study these innovative flexible X-ray detectors in terms of their effectiveness in DR imaging, such as detection efficiency and spatial resolution. To achieve this goal, first, a Monte Carlo model was developed and calibrated to an in-lab 150 kV DR imaging system containing a flat-panel X-ray detector. Second, the validated model was updated with various types of flexible X-ray detectors to assess their performance in nearly realistic conditions. Key parameters such as the detection efficiency pertaining to the crystal material and thickness were studied and analyzed across a broader energy range up to 662 keV. Finally, the imaging performance of the different detectors was evaluated and compared to that of the flat-panel detector in the 150 kV DR imaging system. The results show that the flexible detectors such as the CsPbBr3 crystal detector deliver promising performance in X-ray imaging and can be applied to a wider range of application scenarios, especially those requiring accurate detection at challenging angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00073 and http://cstr.cn/31253.11.sciencedb.j00186.00073.         

References

  1. H. Liang, S. Cui, R. Su et al., Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics 6(2), 351–359 (2018). https://doi.org/10.1021/acsphotonics.8b00769

    Article  Google Scholar 

  2. D. Mery, Computer Vision for X-Ray Testing, vol. 10 (Springer, Switzerland, 2015). https://doi.org/10.1007/978-3-319-20747-6

    Book  MATH  Google Scholar 

  3. W. Zhao, D. Hunt, K. Tanioka et al., Amorphous selenium flat panel detectors for medical applications. Nucl. Instrum. Meth. Phys. Res. Sect. A 549(1–3), 205–209 (2005). https://doi.org/10.1016/j.nima.2005.04.053

    Article  ADS  Google Scholar 

  4. X. Ou, X. Chen, X. Xu et al., 2021 Recent development in X-ray imaging technology: future and challenges. Research 2021, 9892152 (2021). https://doi.org/10.34133/2021/9892152

    Article  ADS  Google Scholar 

  5. S. Cherry, M. Dahlbom, PET: physics, instrumentation, and scanners, in PET (Springer, New York, NY, 2006), p. 1–117. https://doi.org/10.1007/978-0-387-22529-6_1

  6. Z. Yang, J. Hu, D. Van der Heggen et al., Realizing simultaneous X-Ray imaging and dosimetry using phosphor-based detectors with high memory stability and convenient readout process. Adv. Funct. Mater. 32, 2201684 (2022). https://doi.org/10.1002/adfm.202201684

    Article  Google Scholar 

  7. Z. Yang, Q. Xu, X. Wang et al., Large and ultrastable all-inorganic CsPbBr 3 monocrystalline films: low-temperature growth and application for high-performance photodetectors. Adv. Mater. 30(44), 1802110 (2018). https://doi.org/10.1002/adma.201802110

    Article  Google Scholar 

  8. J. Guo, Y. Xu, W. Yang et al., High-stability flexible X-ray detectors based on lead-free halide perovskite Cs2TeI6 films. ACS Appl. Mater. Interfaces 13(20), 23928–23935 (2021). https://doi.org/10.1021/acsami.1c04252

    Article  Google Scholar 

  9. A. Ciavatti, R. Sorrentino, L. Basiricò et al., High-sensitivity flexible X-ray detectors based on printed perovskite inks. Adv. Funct. Mater. 31(11), 2009072 (2021). https://doi.org/10.1002/adfm.202009072

    Article  Google Scholar 

  10. A.J.J.M. van Breemen, M. Simon, O. Tousignant et al., Curved digital X-ray detectors. NPJ Flex. Electron. 4(1), 22 (2020). https://doi.org/10.1038/s41528-020-00084-7

    Article  Google Scholar 

  11. M. Roknuzzaman, K. Ostrikov, H. Wang et al., Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 7(1), 14025 (2017). https://doi.org/10.1038/s41598-017-13172-y

    Article  ADS  Google Scholar 

  12. J. Choi, B. Park, C. Ha et al., Improving the light collection using a new NaI (Tl) crystal encapsulation. Nucl. Instrum. Meth. Phys. Res. Sect. A 981, 164556 (2020). https://doi.org/10.1016/j.nima.2020.164556

    Article  Google Scholar 

  13. T. Kuo, C. Wu, H. Lu et al., Flexible X-ray imaging detector based on direct conversion in amorphous selenium. J. Vac. Sci. Technol. A 32(4), 041507 (2014). https://doi.org/10.1116/1.4882835

    Article  Google Scholar 

  14. W. Lü, X. Wei, Q. Wang et al., New flexible CsPbBr 3-based scintillator for X-ray tomography. Nucl. Sci. Tech. 33(8), 98 (2022). https://doi.org/10.1007/s41365-022-01085-z

    Article  Google Scholar 

  15. Y. Xu, A. Ying, J. Peng et al., Hybrid perovskite X-ray detectors with enhanced radio luminescence via thermally activated delayed fluorescence. Sci. China Mater. 66, 724–732 (2022). https://doi.org/10.1007/s40843-022-2193-6

    Article  Google Scholar 

  16. X. Huang, H. Liu, J. Zhang et al., Simulation and photoelectron track reconstruction of soft X-ray polarimeter. Nucl. Sci. Tech. 32, 67 (2021). https://doi.org/10.1007/s41365-021-00903-0

    Article  Google Scholar 

  17. G. Knoll, Radiation Detection and Measurement, 4th ed (Wiley, 2010). ISBN-10.978-0-470-131480

  18. Y. Wang, J. Liang, Q. Zhang et al., Development and verification of Geant4-based parallel computing Monte Carlo simulations for nuclear logging applications. Ann. Nucl. Energy 172, 109079 (2022). https://doi.org/10.1016/j.anucene.2022.109079

    Article  Google Scholar 

  19. X. Wang, J. Liang, Y. Li et al., Hybrid Monte Carlo methods for Geant4-based nuclear well logging implementation. Ann. Nucl. Energy 169, 108824 (2022). https://doi.org/10.1016/j.anucene.2021.108824

    Article  Google Scholar 

  20. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. Sect. A 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  21. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  ADS  Google Scholar 

  22. J. Allison, Recent developments in Geant4. Nucl. Instrum. Meth. Phys. Res. Sect. A 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  23. K. Cranley, B. Gilmore, G. Fogarty et al., Catalogue of Diagnostic X-ray Spectra and Other Data. IPEM Report No. 78 (The Institute of Physics and Engineering in Medicine, York, UK, 1997)

  24. ICRP, Conversion coefficients for use in radiological protection against external radiation. ICRP 74. Ann. ICRP 26, 159–179 (1996)

  25. Y. Liu, B. Wei, Y. Xu et al., Feasibility study on determining the conventional true value of gamma-ray air kerma in a minitype reference radiation. Nucl. Sci. Tech. 28(6), 80 (2017). https://doi.org/10.1007/s41365-017-0236-5

    Article  Google Scholar 

  26. S. Bouzit, L. MacDonald, Colour difference metrics and image sharpness, in Color and Imaging Conference, Vol. 2000, No. 1 (Society for Imaging Science and Technology, 2000), p. 262–267 (2000)

  27. C. Zhang, X. Pan, J. Ding et al., Simulation study on characteristics of information extraction in multiple-image radiography. Nucl. Sci. Tech. 29, 72 (2018). https://doi.org/10.1007/s41365-018-0403-3

    Article  Google Scholar 

  28. M. Guthoff, O. Brovchenko, W. De Boer et al., Geant4 simulation of a filtered X-ray source for radiation damage studies. Nucl. Instrum. Meth. Phys. Res. Sect. A 675, 118–122 (2012). https://doi.org/10.1016/j.nima.2012.01.029

    Article  ADS  Google Scholar 

  29. Y. He, L. Matei, H. Jung et al., High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3 single crystals. Nat. Commun. 9, 1609 (2018). https://doi.org/10.1038/s41467-018-04073-3

    Article  ADS  Google Scholar 

  30. A. Cowen, S. Kengyelics, A. Davies et al., Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin. Radiol. 63(5), 487–498 (2008). https://doi.org/10.1016/j.crad.2007.10.014

    Article  Google Scholar 

  31. J.-Y. Rong, G.-T. Fu, C.-F. Wei et al., Measurement of spatial resolution of the micro-CT system. Chin. Phys. C 34, 412 (2010). https://doi.org/10.1088/1674-1137/34/3/022

    Article  ADS  Google Scholar 

  32. A. Mittal, A. Moorthy, A. Bovik et al., No-reference image quality assessment in the spatial domain. IEEE Trans. Image Proc. 21(12), 4695–4708 (2012). https://doi.org/10.1109/TIP.2012.2214050

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Anam, T. Fujibuchi, F. Haryanto et al., Automated MTF measurement in CT images with a simple wire phantom. Polish J. Med. Phys. Eng. 25(3), 179–187 (2019). https://doi.org/10.2478/pjmpe-2019-0024

    Article  Google Scholar 

  34. Z. He, N. Huang, P. Wang et al., Spatial resolution and image processing for pinhole camera-based X-ray fluorescence imaging: a simulation study. Nucl. Sci. Tech. 33(5), 64 (2022). https://doi.org/10.1007/s41365-022-01036-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yang Wang and Qiong Zhang. The first draft of the manuscript was written by Yang Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the China Natural Science Fund (No.52171253) and Natural Science Foundation of Sichuan (No. 2022NSFSC0949).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Q. A characterization study on perovskite X-ray detector performance based on a digital radiography system. NUCL SCI TECH 34, 69 (2023). https://doi.org/10.1007/s41365-023-01220-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01220-4

Keywords

Navigation