Skip to main content
Log in

High-accuracy measurement of Compton scattering in germanium for dark matter searches

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Compton scattering with bound electrons contributes to a significant atomic effect in low-momentum transfer, yielding background structures in direct light dark matter searches as well as low-energy rare event experiments. We report the measurement of Compton scattering in low-momentum transfer by implementing a 10-g germanium detector bombarded by a \(^{137}\text{Cs}\) source with a radioactivity of 8.7 mCi and a scatter photon captured by a cylindrical NaI(Tl) detector. A fully relativistic impulse approximation combined with multi-configuration Dirac–Fock wavefunctions was evaluated, and the scattering function of Geant4 software was replaced by our calculation results. Our measurements show that the Livermore model with the modified scattering function in Geant4 is in good agreement with the experimental data. It is also revealed that atomic many-body effects significantly influence Compton scattering for low-momentum transfer (sub-keV energy transfer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.C. Rubin, W.K. Ford, Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379–403 (1970). https://doi.org/10.1086/150317

    Article  ADS  Google Scholar 

  2. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933). https://doi.org/10.1007/S10714-008-0707-4

    Article  ADS  MATH  Google Scholar 

  3. E. Corbelli, P. Salucci, The extended rotation curve and the dark matter halo of M33. Mon. Not. R. Astron. Soc. 311, 441–447 (2000). https://doi.org/10.1046/j.1365-8711.2000.03075.x

    Article  ADS  Google Scholar 

  4. D. Clowe, M. Bradač, A.H. Gonzalez et al., A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109 (2006). https://doi.org/10.1086/508162

    Article  ADS  Google Scholar 

  5. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). https://doi.org/10.1016/j.physrep.2004.08.031

    Article  ADS  Google Scholar 

  6. D.J. Eisenstein, I. Zehavi, D.W. Hogg et al., Detection of the Baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005). https://doi.org/10.1086/466512

    Article  ADS  Google Scholar 

  7. N. Aghanim et al., Planck 2018 results - VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

    Article  Google Scholar 

  8. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996). https://doi.org/10.1016/0370-1573(95)00058-5

    Article  ADS  Google Scholar 

  9. E. Aprile, J. Aalbers, F. Agostini et al., Search for light dark matter interactions enhanced by the migdal effect or Bremsstrahlung in XENON1T. Phys. Rev. Lett. 123, 241803 (2019). https://doi.org/10.1103/PhysRevLett.123.241803

    Article  ADS  Google Scholar 

  10. X. Cui, A. Abdukerim, Z.H. Bo et al., Search for cosmic-ray boosted sub-GeV dark matter at the PandaX-II experiment. Phys. Rev. Lett. 128, 171801 (2022). https://doi.org/10.1103/PhysRevLett.128.171801

    Article  ADS  Google Scholar 

  11. Z.Z. Liu, L.T. Yang, Q. Yue et al., Studies of the Earth shielding effect to direct dark matter searches at the China Jinping Underground Laboratory. Phys. Rev. D 105, 052005 (2022). https://doi.org/10.1103/PhysRevD.105.052005

    Article  ADS  Google Scholar 

  12. L.T. Yang, H.B. Li, Q. Yue et al., Search for light weakly-interacting-massive-particle dark matter by annual modulation analysis with a point-contact germanium detector at the China Jinping Underground Laboratory. Phys. Rev. Lett. 123, 221301 (2019). https://doi.org/10.1103/PhysRevLett.123.221301

    Article  ADS  Google Scholar 

  13. H. Jiang, L.P. Jia, Q. Yue et al., Limits on light weakly interacting massive particles from the first 102.8 kg \(\times\) day data of the CDEX-10 experiment. Phys. Rev. Lett. 120, 241301 (2018). https://doi.org/10.1103/PhysRevLett.120.241301

    Article  ADS  Google Scholar 

  14. P. Agnes, I.F.M. Albuquerque, T. Alexander et al., Low-mass dark matter search with the DarkSide-50 experiment. Phys. Rev. Lett. 121, 081307 (2018). https://doi.org/10.1103/PhysRevLett.121.081307

    Article  ADS  Google Scholar 

  15. R. Agnese, T. Aralis, T. Aramaki et al., Search for low-mass dark matter with CDMSlite using a profile likelihood fit Phys. Rev. D 99, 062001 (2019). https://doi.org/10.1103/PhysRevD.99.062001

    Article  Google Scholar 

  16. J. Gascon, E. Armengaud, Q. Arnaud, et al., (EDELWEISS Collaboration), Low-mass dark matter searches with EDELWEISS. preprint (2021). arXiv:2112.05467 [physics.ins-det] https://doi.org/10.48550/arXiv.2112.05467

  17. M. Mancuso, A.H. Abdelhameed, G. Angloher et al., Searches for light dark matter with the CRESST-III experiment. J. Low Temp. Phys. 199, 547–555 (2020). https://doi.org/10.1007/s10909-020-02343-3

    Article  ADS  Google Scholar 

  18. H.M. Araújoa, S.N. Balashovb, J.E. Borg, et al., (MIGDAL Collaboration), The MIGDAL experiment: measuring a rare atomic process to aid the search for dark matter. preprint (2022). arXiv:2207.08284 [hep-ex] https://doi.org/10.48550/arXiv.2207.08284

  19. A. Aguilar-Arevalo, D. Amidei, D. Baxter et al., Constraints on light dark matter particles interacting with electrons from DAMIC at SNOLAB. Phys. Rev. Lett. 123, 181802 (2019). https://doi.org/10.1103/PhysRevLett.123.181802

    Article  ADS  Google Scholar 

  20. T. Aralis, T. Aramaki, I.J. Arnquist et al., Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment. Phys. Rev. D 101, 052008 (2020). https://doi.org/10.1103/PhysRevD.101.052008

    Article  ADS  Google Scholar 

  21. R.L. Workman, V.D. Burkert, V. Crede et al., Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097

    Article  Google Scholar 

  22. L. Di Luzio, M. Giannotti, E. Nardi et al., The landscape of QCD axion models. Phys. Rep. 870, 1–117 (2020). https://doi.org/10.1016/j.physrep.2020.06.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. H. An, M. Pospelov, J. Pradler, Dark matter detectors as dark photon helioscopes. Phys. Rev. Lett. 111, 041302 (2013). https://doi.org/10.1103/PhysRevLett.111.041302

    Article  ADS  Google Scholar 

  24. P.K. Hu, A. Kusenko, V. Takhistov, Dark cosmic rays. Phys. Lett. B 768, 18–22 (2017). https://doi.org/10.1016/j.physletb.2017.02.035

    Article  ADS  MathSciNet  Google Scholar 

  25. Y.L. Yan, W.X. Zhong, S.T. Lin et al., Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments. Nucl. Sci. Tech. 31, 55 (2020). https://doi.org/10.22323/1.282.0874

    Article  Google Scholar 

  26. P. Barton, M. Amman, R. Martin et al., Ultra-low noise mechanically cooled germanium detector. Nucl. Instrum. Methods A 812, 17 (2016). https://doi.org/10.1016/j.nima.2015.12.031

    Article  ADS  Google Scholar 

  27. W.H. Zeng, H. Ma, M. Zeng et al., Evaluation of cosmogenic activation of copper and germanium during production in Jinping Underground Laboratory. Nucl. Sci. Tech. 31, 50 (2020). https://doi.org/10.1007/s41365-020-00760-3

    Article  Google Scholar 

  28. J.T. Li, X.D. Su, G.L. Zhang et al., Energy calibration of HPGe detector using the high-energy characteristic \(\gamma\) rays in \({}^{13}{\rm C}\) formed in \({}^{6}{\rm Li}\) + \({}^{12}{\rm C}\) reaction. Nucl. Sci. Tech. 31, 49 (2020). https://doi.org/10.1007/s41365-020-00758-x

    Article  Google Scholar 

  29. E. Aprile, J. Aalbers, F. Agostini et al., Search for inelastic scattering of WIMP dark matter in XENON1T. Phys. Rev. D 103, 063028 (2021). https://doi.org/10.1103/PhysRevD.103.063028

    Article  ADS  Google Scholar 

  30. K.L. Giboni, P. Juyal, E. Aprile et al., A LN2-based cooling system for a next-generation liquid xenon dark matter detector. Nucl. Sci. Tech. 31, 76 (2020). https://doi.org/10.1007/s41365-020-00786-7

    Article  Google Scholar 

  31. R.M.J. Li, S.K. Liu, S.T. Lin et al., Identification of anomalous fast bulk events in a p-type point-contact germanium detector. Nucl. Sci. Tech. 33, 57 (2022). https://doi.org/10.1007/s41365-022-01041-x

    Article  Google Scholar 

  32. D. Barker, Low energy background spectrum in CDMSlite. Proc. Sci. 282, 874 (2017). https://doi.org/10.22323/1.282.0874

    Article  Google Scholar 

  33. K. Ramanathan, A. Kavner, A.E. Chavarria et al., Measurement of low energy ionization signals from Compton scattering in a charge-coupled device dark matter detector. Phys. Rev. D 96, 042002 (2017). https://doi.org/10.1103/PhysRevD.96.042002

    Article  ADS  Google Scholar 

  34. D. Norcini, N. Castelló-Mor, D. Baxter, et al., (DAMIC-M Collaboration), Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection. preprint (2022). arXiv:2207.00809 [physics.ins-det] https://doi.org/10.48550/arXiv.2207.00809

  35. X.D. Su, G.L. Zhang, S.P. Xu et al., Attenuation coefficients of gamma and X-rays passing through six materials. Nucl. Sci. Tech. 31, 3 (2020). https://doi.org/10.1016/0168-9002(96)00652-3

    Article  Google Scholar 

  36. S. Komura, A. Takada, Y. Mizumura, Imaging polarimeter for a sub-MeV gamma-ray all-sky survey using an electron-tracking compton camera. Astrophys. J. 839, 41 (2017). https://doi.org/10.3847/1538-4357/aa68dc

    Article  ADS  Google Scholar 

  37. H.W. Wang, G.T. Fan, L.X. Liu et al., Commissioning of laser electron gamma beamline SLEGS at SSRF. Nucl. Sci. Tech. 33, 87 (2022). https://doi.org/10.1007/s41365-022-01076-0

    Article  Google Scholar 

  38. G.C. Yang, L.M. Hua, F. Lu et al., Response functions of a \(4\pi\) summing gamma detector in \(\beta\)-Oslo method. Nucl. Sci. Tech. 56, 68 (2022). https://doi.org/10.1007/s41365-022-01058-2

    Article  Google Scholar 

  39. D. Brusa, G. Stutz, J.A. Riveros et al., Fast sampling algorithm for the simulation of photon Compton scattering. Nucl. Instrum. Methods A 379, 167–175 (1996). https://doi.org/10.1016/0168-9002(96)00652-3

    Article  ADS  Google Scholar 

  40. O. Klein, Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys. 52, 853–868 (1929). https://doi.org/10.1007/BF01366453

    Article  ADS  MATH  Google Scholar 

  41. P. Eisenberger, W.A. Reed, Relationship of the relativistic Compton cross section to the electron’s velocity distribution. Phys. Rev. B 9, 3237 (1974). https://doi.org/10.1103/PhysRevB.9.3237

    Article  ADS  Google Scholar 

  42. R. Ribberfors, Relationship of the relativistic Compton cross section to the momentum distribution of bound electron states. Phys. Rev. B 12, 2067 (1975). https://doi.org/10.1103/PhysRevB.12.2067

    Article  ADS  Google Scholar 

  43. R. Ribberfors, K.-F. Berggren, Incoherent-x-ray-scattering functions and cross sections \({(\frac{d\sigma }{d{\Omega }^{^{\prime }}})}_{{\rm incoh}}\) by means of a pocket calculator. Phys. Rev. A 26, 3325 (1982). https://doi.org/10.1103/PhysRevA.26.3325

    Article  ADS  Google Scholar 

  44. C.-K. Qiao, J.-W. Wei, L. Chen, An overview of the Compton scattering calculation. Crystals 11, 525 (2021). https://doi.org/10.3390/cryst11050525

    Article  Google Scholar 

  45. J.H. Hubbell, W.J. Veigele, E.A. Briggs, et al., Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4, 471 (1975). Erratum: 6, 615 (1977). https://doi.org/10.1063/1.555523

  46. F. Biggs, L.B. Mendelsohn, J.B. Mann, Hartree-Fock Compton profiles for the elements. Atom. Data Nucl. Data 16, 201 (1975). https://doi.org/10.1016/0092-640X(75)90030-3

    Article  ADS  Google Scholar 

  47. D.E. Cullen, J.H. Hubbell, L. Kissel, EPDL97: the evaluated photon data library. UCRL-50400 6(5), 1–28 (1997). https://doi.org/10.2172/295438

    Article  Google Scholar 

  48. J.P. Desclaux, A multiconfiguration relativistic Dirac-Fock program. Comput. Phys. Commun. 9(1), 31–45 (1975). https://doi.org/10.1016/0010-4655(75)90054-5

    Article  ADS  Google Scholar 

  49. C.-K. Qiao, H.-C. Chi, L. Zhang et al., Relativistic impulse approximation in Compton scattering. J. Phys. B At. Mol. Opt. Phys. 53, 075002 (2020). https://doi.org/10.1088/1361-6455/ab69a7

    Article  ADS  Google Scholar 

  50. R.H. Pratt, L.A. LaJohn, V. Florescu et al., Compton scattering revisited. Radiat. Phys. Chem. 79, 124–131 (2010). https://doi.org/10.1016/j.radphyschem.2009.04.035

    Article  ADS  Google Scholar 

  51. S. Kahane, Relativistic Dirac–Hartree–Fork photon incoherent scattering functions. Atom. Data Nucl. Data 68, 323–347 (1998). https://doi.org/10.1006/adnd.1998.0770

    Article  ADS  Google Scholar 

  52. K.G. Dyall, I.P. Grant, C.T. Johnson et al., GRASP: a general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425 (1989). https://doi.org/10.1016/0010-4655(89)90136-7

    Article  ADS  Google Scholar 

  53. B.M. Roberts, V.A. Dzuba, V.V. Flambaum et al., Dark matter scattering on electrons: accurate calculations of atomic excitations and implications for the DAMA signal. Phys. Rev. D 93, 115037 (2016). https://doi.org/10.1103/PhysRevD.93.115037

    Article  ADS  Google Scholar 

  54. B.L. Henke, E.M. Gullikson, J.C. Davis, X-ray interactions: photoabsorption, scattering, transmission, and reflection at \(E=\) 50–30,000 eV, \(Z\) = 1–92. Atom. Data Nucl. Data 54, 181 (1993). https://doi.org/10.1006/adnd.1993.1013

    Article  ADS  Google Scholar 

  55. R.D. Deslattes, E.G. Kessler Jr., P. Indelicato et al., X-ray transition energies: new approach to a comprehensive evaluation. Rev. Mod. Phys. 75, 35–99 (2003). https://doi.org/10.1103/RevModPhys.75.35

    Article  ADS  Google Scholar 

  56. R.D. Deslattes, E.G. Kessler Jr., P. Indelicato, et al., X-ray Transition Energies (version 1.2) (2005). [Online] Available: http://physics.nist.gov/XrayTrans National Institute of Standards and Technology, Gaithersburg, MD

  57. C.E. Moore, Ionization potentials and ionization limits derived from the analysis of optical spectra. Nat. Stand. Ref. Data Ser. 34, 22 (1970). https://doi.org/10.6028/nbs.nsrds.34

    Article  ADS  Google Scholar 

  58. I. Waller, D.R. Hartee, On the intensity of total scattering of X-rays. Proc. R. Soc. Lond. A 124, 119 (1929). https://doi.org/10.1098/rspa.1929.0101

    Article  ADS  MATH  Google Scholar 

  59. F. Salvat, J. Fernández-Varea, J. Sempau, PENELOPE-2008: a code system for Monte Carlo simulation of electron and photon transport. OECD Publishing, Paris (2009). ISBN 978-92-64-99066-1

  60. J.M.C. Brown, M.R. Dimmock, J.E. Gillam et al., A low energy bound atomic electron Compton scattering model for Geant4. Nucl. Instrum. Methods B 338, 77–88 (2014). https://doi.org/10.1016/j.nimb.2014.07.042

    Article  ADS  Google Scholar 

  61. J. Beechert, H. Lazar, S.E. Boggs et al., Calibrations of the Compton spectrometer and imager. Nucl. Instrum. Methods A 1031, 166510 (2022). https://doi.org/10.1016/j.nima.2022.166510

    Article  Google Scholar 

  62. W. Korten, A. Atac, D. Beaumel et al., Physics opportunities with the Advanced Gamma Tracking Array: AGATA. Eur. Phys. J. A 56, 137 (2020). https://doi.org/10.1140/epja/s10050-020-00132-w

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hai-Tao Jia, Shin-Ted Lin, Shu-Kui Liu, Peng Gu and Chang-Jian Tang. The first draft of the manuscript was written by Hai-Tao Jia and Chen-Kai Qiao, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shin-Ted Lin or Shu-Kui Liu.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0402203), and the National Natural Science Foundation of China (Nos. 11975159 and 11975162).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, HT., Lin, ST., Liu, SK. et al. High-accuracy measurement of Compton scattering in germanium for dark matter searches. NUCL SCI TECH 33, 157 (2022). https://doi.org/10.1007/s41365-022-01148-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01148-1

Keywords

Navigation