Skip to main content

Advertisement

Log in

A compact electron storage ring for lithographical applications

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The physical design for a novel low-energy compact-storage-ring-based extreme ultraviolet (EUV) light source was systemically studied. The design process considers the linear and nonlinear beam optics, including transverse matching and the optimization of the dynamic aperture, momentum aperture, and beam lifetime. With a total circumference of 36.7 m and a beam energy of 400 MeV, the storage ring can operate with an average beam current of up to 1 A. With the undulator as the radiator, this facility has the potential to emit EUV radiation at 13.5 nm with an average power exceeding 10 W within the bandwidth. In addition, the collective instabilities of the lattice at high beam current were analyzed; it was found that the typical instabilities which may occur in an electron storage ring can be reasonably controlled in our design. With the advantages of variable beam energy and current, this design exhibits great promise as a new candidate for various EUV lithographical applications requiring tunable radiation power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Wood, E.U.V. Lithography, New metrology challenges. AIP Conf. Proc. 931, 375 (2007). https://doi.org/10.1063/1.2799401

    Article  ADS  Google Scholar 

  2. A. Hassanein, T. Sizyuk, Laser produced plasma sources for nanolithography—recent integrated simulation and benchmarking. Phys. Plasmas 20, 053105 (2013). https://doi.org/10.1063/1.4807379

    Article  ADS  Google Scholar 

  3. U. Stamm, Extreme ultraviolet light sources for use in semiconductor lithography—state of the art and future development. J. Phys. D Appl. Phys. 37(23), 3244 (2004). https://doi.org/10.1088/0022-3727/37/23/005

    Article  ADS  Google Scholar 

  4. X. Deng, A. Chao, J. Feikes et al., Experimental demonstration of the mechanism of steady-state microbunching. Nature 590, 576–579 (2021). https://doi.org/10.1038/S41586-021-03203-0

    Article  ADS  Google Scholar 

  5. C. Feng, X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). https://doi.org/10.1007/s41365-018-0490-1

    Article  Google Scholar 

  6. C. Feng, Z. Zhao, A storage ring based free-electron laser for generating ultrashort coherent euv and x-ray radiation. Sci. Rep. 7, 4724 (2017). https://doi.org/10.1038/s41598-017-04962-5

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. Ekinci, T. Garvey, A Streun et al., A compact high-brightness accelerator-based EUV source for actinic mask inspection. in High-Brightness Sources and Light-driven Interactions, OSA Technical Digest (online) (Optical Society of America, 2018), paper ET3B.5. https://doi.org/10.1364/EUVXRAY.2018.ET3B.5

  8. R. Klein, R. Thornagel, G. Ulm et al., Status of the metrology light source. J. Electron. Spectrosc. 184, 331–334 (2011). https://doi.org/10.1016/j.elspec.2010.09.008

    Article  Google Scholar 

  9. S.Y. Lee, Accelerator Physics, 3rd edn (World Scientific, 2013). ISBN: 978-981-4374-94-1

  10. Y. Wang, M. Borland, Pelegant: a parallel accelerator simulation code for electron generation and tracking. AIP Conf. Proc. 877, 241 (2006). https://doi.org/10.1063/1.2409141

    Article  ADS  Google Scholar 

  11. J. Bengtsson, A. Streun, B. Singh et al., Control of the nonlinear dynamics for medium energy synchrotron light source, in Proceedings of IPAC08 (2018, Vancouver), pp. 4037–4041. https://doi.org/10.18429/JACoW-IPAC2018-THPMF006

  12. X. Huang, J. Corbelt, J. Safranek et al., An algorithm for online optimization of accelerators. Nucl. Instrum. Meth. A 726, 77–83 (2013). https://doi.org/10.1016/j.nima.2013.05.046

    Article  ADS  Google Scholar 

  13. A. Terebilo, Accelerator modeling with matlab accelerator toolbox, in Proceedings of PAC01 (Chicago, 2001), pp. 3203–3205. doi: https://doi.org/10.1109/PAC.2001.988056

  14. W.B. Song, L. Shang, F.L. Shang et al., Nonlinear kicker design and research for Hefei advanced light facility. Nucl. Tech. 44(6), 060202 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.060202 (in Chinese)

    Article  Google Scholar 

  15. J. Tong, G. Mu, B. Liu et al., Design simulation and magnetic field measurement of eddy-current type thin septum magnet for beam injection of diffraction limited storage ring. Nucl. Tech. 43(12), 120202 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.120202 (in Chinese)

    Article  Google Scholar 

  16. R. Nagaoka, K.L.F. Bane, Collective effects in a diffraction limited storage ring. J. Synchrotron Rad. 21, 937–960 (2014). https://doi.org/10.1107/S1600577514015215

    Article  Google Scholar 

  17. N. Carmignani, Touschek lifetime studies and optimization of the European synchrotron radiation facility. Ph.D. thesis, University of Pisa, Italy (2016). https://doi.org/10.1007/978-3-319-25798-3

  18. P.S. Dester, F. Sa, L. Liu, Energy acceptance and on momentum aperture optimization for the Sirius project. J. Phys. Conf. Ser. 874(1), 012068 (2017). https://doi.org/10.1088/1742-6596/874/1/012068

    Article  Google Scholar 

  19. W. Wu, K. Xuan, W. Xu et al., Development of a control system for the fourth-harmonic cavity of the HLS storage ring. Nucl. Sci. Tech. 29, 153 (2018). https://doi.org/10.1007/s41365-020-00836-0

    Article  Google Scholar 

  20. K.Y. Ng, Physics of Intensity Dependent Beam Instabilities (World Scientific, 2006). ISBN: 981-256-342-3

  21. A.W. Chao, K.H. Mess, M. Tigner et al., Handbook of Accelerator Physics and Engineering, 2nd edn. (World Scientific, Singapore, 2013). https://doi.org/10.1142/8543

    Book  Google Scholar 

  22. H. Wiedemann, Particle Accelerator Physics, 3rd edn. (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-18317-6

    Book  Google Scholar 

  23. M.S. Zisman, ZAP User’s Manual, LBL-21270 (1986). https://doi.org/10.2172/6609901

  24. P. Kernel, R. Nagaoka, J.-L. Revol et al., High current single bunch transverse instability at the ESRF: a new approach, in Proceedings of EPAC 2000 (Vienna, 2000). https://accelconf.web.cern.ch/e00/PAPERS/WEP4B04.pdf

  25. T.O. Raubenheimer, F. Zimmermann, Fast beam-ion instability. I. Linear theory and simulations. Phys. Rev. E 52, 5487 (1995). https://doi.org/10.1103/PhysRevE.52.5487

    Article  ADS  Google Scholar 

  26. P.C. Liu, Q.Y. Liu, Z.J. Ma et al., Design of gas bremsstrahlung absorber at high energy photon source beamlines. Nucl. Tech. 43(9), 090102 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.090102(inChinese)

    Article  Google Scholar 

  27. K. Ohmi, Numerical study for the two-beam instability due to ions in electron-storage rings. Phys. Rev. E 55, 7550 (1997). https://doi.org/10.1103/PhysRevE.55.7550

    Article  ADS  Google Scholar 

  28. R. Nagaoka, L. Cassinari, J.-C. Denard et al., Transverse feedback development at SOLEIL, in Proceedings of PAC07 (Albuquerque, 2007). https://doi.org/10.1109/PAC.2007.4440145

  29. T. Tanaka, Numerical methods for characterization of synchrotron radiation based on the Wigner function method. Phys. Rev. ST Accel. Beams 17, 060702 (2014). https://doi.org/10.1103/PhysRevSTAB.17.060702

    Article  ADS  Google Scholar 

  30. T. Tanaka, Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams. Opt. Lett. 42, 1576–1579 (2017). https://doi.org/10.1364/OL.42.001576

    Article  ADS  Google Scholar 

  31. T. Tanaka, Universal representation of undulator phase errors. Phys. Rev. Accel. Beams 21, 110704 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.110704

    Article  ADS  Google Scholar 

  32. S. Casalbuoni, N. Glamann, A. Grau et al., Superconducting undulators: from development towards a commercial product. Synchrotron Radiat. News 31(3), 24–28 (2018). https://doi.org/10.1080/08940886.2018.1460171

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Bo-Cheng Jiang for useful discussions on storage ring physics, Dr. Zhen Wang for assistance with SPECTRA, Dr. Chao Feng for advice on the undulator, Dr. Xiao-Xia Huang for assistance with the impedance calculation, Dr. Yi-Yong Liu for the vacuum pipe calculation, and Dr. Wei Zhang for advice on the magnets.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Si-Qi Shen, Da-Zhang Huang, and Zhen-Tang Zhao. The first draft of the manuscript was written by Si-Qi Shen, and all authors commented on subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Da-Zhang Huang.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0401901) and the National Natural Science Foundation of China (No. 11675248).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, SQ., Huang, DZ., Zhao, ZT. et al. A compact electron storage ring for lithographical applications. NUCL SCI TECH 32, 91 (2021). https://doi.org/10.1007/s41365-021-00924-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00924-9

Keywords

Navigation