Skip to main content
Log in

Performance of the CAT-TPC based on two-dimensional readout strips

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A gas detector 140\(\times\)140\(\times\)140 mm\(^3\) in size, termed the compact active target time projection chamber (CAT-TPC), was developed in this study to measure resonant scattering associated with cluster structures in unstable nuclei. The CAT-TPC consists of an electronic field cage, double-thick gas-electron-multiplier foils, a general-purpose digital data acquisition system, and a newly developed two-dimensional strip-readout structure. The CAT-TPC was operated using a \(^4\)He (96%) + CO\(_2\) (4%) gas mixture at 400 mbar. The working gas also serves as an active target for tracking charged particles. The overall performance of the CAT-TPC was evaluated using a collimated \(\alpha\)-particle source. A time resolution of less than 20 ns and a position resolution of less than 0.2 mm were observed along the electron drift direction. Three-dimensional images of incident trajectories and scattering events can be clearly reconstructed under an angular resolution of approximately 0.45 degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.N. Marx, D.R. Nygren, The time projection chamber. Phys. Today 31(10), 46–53 (1978). https://doi.org/10.1063/1.2994775

    Article  Google Scholar 

  2. P. Juyal, K.L. Giboni, X.D. Ji et al., On proportional scintillation in very large liquid xenon detectors. Nucl. Sci. Tech. 31, 93 (2020). https://doi.org/10.1007/s41365-020-00797-4

    Article  Google Scholar 

  3. K.L. Giboni, P. Juyal, E. Aprile et al., A \({LN_{2}}\)-based cooling system for a next-generation liquid xenon dark matter detector. Nucl. Sci. Tech. 31, 76 (2020). https://doi.org/10.1007/s41365-020-00786-7

    Article  Google Scholar 

  4. H. Yang, Z.F. Xu, J. Tang et al., Spin coating of TPB film on acrylic substrate and measurement of its wavelength shifting efficiency. Nucl. Sci. Tech. 31, 28 (2020). https://doi.org/10.1007/s41365-020-0737-5

    Article  Google Scholar 

  5. C. Brand, G. Cairanti, P. Charpentier et al., The DELPHI time projection chamber. Nucl. Instrum. Methods A 283, 567–572 (1989). https://doi.org/10.1109/23.34417

    Article  ADS  Google Scholar 

  6. M. Anderson, F. Bieser, R. Bossingham et al., The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods A 499, 659–678 (2003). https://doi.org/10.1016/S0168-9002(02)01964-2

    Article  ADS  Google Scholar 

  7. J. Bachler, J. Bracinik, H.G. Fischer et al., Development of a TPC detector for the ALICE experiment. Nucl. Instrum. Methods A 419, 511–514 (1998). https://doi.org/10.1016/S0168-9002(98)00858-4

    Article  ADS  Google Scholar 

  8. B.J. Zheng, Y.L. Li, Z.Y. Deng et al., Drift field improvement and test in a GEM-TPC prototype. Chin. Phys. C 35, 56–60 (2011). https://doi.org/10.1088/1674-1137/35/1/012

    Article  ADS  Google Scholar 

  9. G.D. Alkhazov, M.N. Andronenko, A.V. Dobrovolsky et al., Nuclear matter distributions in \({^{6}{\rm He}}\) and \({^{8}{\rm He}}\) from small angle p-He scattering in inverse kinematics at intermediate energy. Phys. Rev. Lett. 78, 2313–2316 (1997). https://doi.org/10.1103/PhysRevLett.78.2313

    Article  ADS  Google Scholar 

  10. B. Blank, L. Hay, J. Huikari et al., A time projection chamber for the three-dimensional reconstruction of two-proton radioactivity events. Nucl. Instrum. Methods A 613, 65–78 (2010). https://doi.org/10.1016/j.nima.2009.10.140

    Article  ADS  Google Scholar 

  11. X.Y. Liu, Y.W. Yang, R. Liu et al., Measurement of the neutron total cross section of carbon at the Back-n white neutron beam of CSNS. Nucl. Sci. Tech. 30, 139 (2019). https://doi.org/10.1007/s41365-019-0660-9

    Article  Google Scholar 

  12. X.Y. Zhao, F. Liu, Z. Deng et al., GERO: a general SCA-based readout ASIC for micro-pattern gas detectors with configurable storage depth and on-chip digitizer. Nucl. Sci. Tech. 30, 131 (2019). https://doi.org/10.1007/s41365-019-0659-2

    Article  Google Scholar 

  13. A. Fritsch, T. Suzuki, A. Tamii et al., High-resolution study of Gamow–Teller transitions in the \({^{48}{\rm Ti}}\)(\({^{3}{\rm He}}\), t)\({^{48}{\rm V}}\) reaction. Phys. Rev. C 93, 064326 (2016). https://doi.org/10.1103/PhysRevC.93.064326

    Article  ADS  Google Scholar 

  14. D. Suzuki, M. Ford, D. Bazin et al., Prototype AT-TPC: toward a new generation active target time projection chamber for radioactive beam experiment. Nucl. Instrum. Methods A 691, 39–54 (2012). https://doi.org/10.1016/j.nima.2012.06.050

    Article  ADS  Google Scholar 

  15. M. Caamano, W. Mittig, H. Savajols et al., Resonance state in \({^{7}{\rm H}}\). Phys. Rev. Lett. 99, 062502 (2007). https://doi.org/10.1103/PhysRevLett.99.062502

    Article  ADS  Google Scholar 

  16. S. Bailey, M. Freer, S. Cruz et al., Energy levels of \({^{18}{\rm F}}\) from the \({^{14}{\rm N}}+{\alpha }\) resonant reaction. Phys. Rev. C 90, 024302 (2014). https://doi.org/10.1103/PhysRevC.90.024302

    Article  ADS  Google Scholar 

  17. T. Ahn, D.W. Bardayan, D. Bazin et al., The prototype active-target time-projection chamber used with TwinSol radioactive-ion beams. Nucl. Instrum. Methods B 376, 321–325 (2016). https://doi.org/10.1016/j.nimb.2015.12.042

    Article  ADS  Google Scholar 

  18. T. Furuno, T. Kawabata, H.J. Ong et al., Performance test of the MAIKo active target. Nucl. Instrum. Methods A 908, 215–224 (2018). https://doi.org/10.1016/j.nima.2018.08.042

    Article  ADS  Google Scholar 

  19. D. Bazin, T. Ahn, Y. Ayyad et al., Low energy nuclear physics with active targets and time projection chambers. Progr. Part. Nucl. Phys. 114, 103790 (2020). https://doi.org/10.1016/j.ppnp.2020.103790

    Article  Google Scholar 

  20. Y. Liu, Y.L. Ye, Nuclear clustering in light neutron-rich nuclei. Nucl. Sci. Tech. 29, 184 (2018). https://doi.org/10.1007/s41365-018-0522-x

    Article  Google Scholar 

  21. D. Suzuki, T. Ahn, D. Bazin et al., Cluster structure of neutron-rich 10Be and 14C via resonant alpha scattering. Nuovo Cimento C 39, 372 (2016). https://doi.org/10.1393/ncc/i2016-16372-0

    Article  ADS  Google Scholar 

  22. W. Mittig, S. Beceiro-Novo, A. Fritsch et al., Active target detectors for studies with exotic beams: present and next future. Nucl. Instrum. Methods A 784, 494–498 (2015). https://doi.org/10.1016/j.nima.2014.10.048

    Article  ADS  Google Scholar 

  23. Z.H. Yang, Y.L. Ye, Z.H. Li et al., Observation of enhanced monopole strength and clustering in \(^{12}\)Be. Phys. Rev. Lett. 112, 162501 (2014). https://doi.org/10.1103/PhysRevLett.112.162501

    Article  ADS  Google Scholar 

  24. Y. Liu, Y.L. Ye, J.L. Lou et al., Positive-parity linear-chain molecular band in \(^{16}\)C. Phys. Rev. Lett. 124, 192501 (2020). https://doi.org/10.1103/PhysRevLett.124.192501

    Article  ADS  Google Scholar 

  25. J.Y. Xu, Q.T. Li, Y.L. Ye et al., Performance of a small AT-TPC prototype. Nucl. Sci. Tech. 29, 97 (2018). https://doi.org/10.1007/s41365-018-0437-6

    Article  Google Scholar 

  26. F. Sauli, New observations with the gas electron multiplier (GEM). Nucl. Instrum. Methods A 396, 50–66 (1997). https://doi.org/10.1016/S0168-9002(97)00648-7

    Article  ADS  Google Scholar 

  27. H.B. Liu, Q. Liu, S. Chen et al., A study of thinner-THGEM, with some applications. J. Instrum. 7(06), C06001 (2012). https://doi.org/10.1088/1748-0221/7/06/C06001

    Article  Google Scholar 

  28. Q. Liu, H.B. Liu, S. Chen et al., A successful application of thinner-THGEMs. J. Instrum. 8(11), C11008 (2013). https://doi.org/10.1088/1748-0221/8/11/C11008

    Article  Google Scholar 

  29. C. Shalem, R. Chechik, A. Breskin et al., Advances in thick GEM-like gaseous electron multipliers—part I: atmospheric pressure operation. Nucl. Instrum. Methods A 558, 475–489 (2006). https://doi.org/10.1016/j.nima.2005.12.241

    Article  ADS  Google Scholar 

  30. M. Cortesi, J. Yurkon, A. Stolz, Operation of a THGEM-based detector in low-pressure Helium. J. Instrum. 10(2), P02012 (2015). https://doi.org/10.1088/1748-0221/10/02/P02012

    Article  Google Scholar 

  31. M. Cortesi, S. Rost, W. Mittig et al., Multi-layer thick gas electron multiplier (M-THGEM): a new MPDG structure for high-gain operation at low-pressure. Rev. Sci. Instrum. 88(1), 013303 (2016). https://doi.org/10.1063/1.49743331

    Article  ADS  Google Scholar 

  32. Garfield-simulation of gaseous detectors. http://cern.ch/garfield

  33. H.Y. Wu, Z.H. Li, H. Tan et al., A general-purpose digital data acquisition system (GDDAQ) at Peking University. Nucl. Instrum. Methods A 975, 164200 (2020). https://doi.org/10.1016/j.nima.2020.164200

    Article  Google Scholar 

  34. https://www.xia.com/DGF_Pixie-16.html

  35. H.B. You, Z.H. Yang, Y.L. Ye et al., Construction and calibration of the multi-neutron correlation spectrometer at Peking University. Nucl. Instrum. Methods A 728, 47–52 (2013). https://doi.org/10.1016/j.nima.2013.06.037

    Article  ADS  Google Scholar 

  36. F. Wang, B. Nachman, M. Garcia-Sciveres, Ultimate position resolution of pixel clusters with binary readout for particle tracking. Nucl. Instrum. Methods A 899, 10–15 (2018). https://doi.org/10.1016/j.nima.2018.04.053

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jin-Yan Xu, Qi-Te Li, and Li-Sheng Yang. The first draft of the manuscript was written by Li-Sheng Yang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qi-Te Li.

Additional information

This work is supported by the National Key R&D Program of China (No. 2018YFA0404403), the National Natural Science Foundation of China (Nos. U1967201, 11875074, 11875073, and 11961141003), and the State Key Laboratory of Nuclear Physics and Technology, PKU (No. NPT2020KFY06).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LS., Xu, JY., Li, QT. et al. Performance of the CAT-TPC based on two-dimensional readout strips. NUCL SCI TECH 32, 85 (2021). https://doi.org/10.1007/s41365-021-00919-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00919-6

Keywords

Navigation