Skip to main content
Log in

Theoretical analysis of long-lived radioactive waste in pressurized water reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Background

The accelerator-driven subcritical transmutation system (ADS) is an advanced technology for the harmless disposal of nuclear waste. A theoretical analysis of the ingredients and content of nuclear waste, particularly long-lived waste in a pressurized water reactor (PWR), will provide important information for future spent fuel disposal.

Purpose

The present study is an attempt to investigate the yields of isotopes in the neutron-induced fission process and estimate the content of long-lived ingredients of nuclear waste in a PWR.

Method

We combined an approximation of the mass distribution of five Gaussians with the most probable charge model (\(Z_\text {p}\) model) to obtain the isotope yields in the \(^{235}\)U(n,f) and \(^{239}\)Pu(n,f) processes. The potential energy surface based on the concept of a di-nuclear system model was applied to an approximation using five Gaussian functions. A mathematical formula for the neutron spectrum in a PWR was established, and sets of differential equations were solved to calculate the content of long-lived nuclides in a PWR.

Results

The calculated isotopic fission yields were in good agreement with the experimental data. Except for \(^{238}\)U, the contents of \(^{239}\)Pu, \(^{240}\)Pu, \(^{241}\)Pu, \(^{242}\)Pu, \(^{237}\)Np, \(^{235}\)U, and \(^{236}\)U are predominant in the PWR after reaching a discharge burnup. In addition, some isotope pairs of heavy nuclei reach a similar value after stabilization, which can be explained by the decay chain and effective fission cross-sections. For fission fragments, we simulated the content evolution of some long-lived nuclides \(^{90}\)Sr, \(^{107}\)Pd,\(^{135}\)Cs, and their isobars \(^{90}\)Rb, \(^{107}\)Rh, and \(^{135}\)Xe during a fuel cycle in a PWR. The variations in the inventories of uranium and plutonium were in good agreement with the data in Daya Bay.

Conclusion

A new method is proposed for the prediction of the isotopic fission yield. The inventory of long-lived nuclides was analyzed and predicted after reaching a discharge burnup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C.H. Zeng, 235U Fission product radiological calculations in nuclear fuel reactors. China J. Nuclear Sci. Eng. 12, 81–86 (1992). (in Chinese)

    Google Scholar 

  2. Z.L. Xu, X.C. Wu, H.X. Wan et al., Development of calculation code for fission product in PWR primary loop. Nuclear Power Eng. 35, 207–210 (2014).https://doi.org/10.13832/j.jnpe.2014.S2.0207 (in Chinese)

    Article  Google Scholar 

  3. S.H. Tang, W.F. Liu, J. Xiong et al., Development of calculation code CPFP for fission product in primary loop of pressurized water reactor nuclear power plant. Nuclear Power Eng. 39, 33–38 (2018). https://doi.org/10.13832/j.jnpe.2018.04.0033 (in Chinese)

    Article  Google Scholar 

  4. Z.B. Liu, Research of core distribution calculation for CANDU reactor based on neutron equivalence homogenization theory. (2017). (in Chinese)

  5. Z.S. Xie, B.H. Yin, Procedure for the calculation of neutron-flux and power distribution in light water reactor fuel assemblies. Nuclear Power Eng. 10, 194 (1989). (in Chinese)

    Google Scholar 

  6. Z.L. Bai, Q. Zhou, Z.J. Yang et al., Development on scintillator fiber detect system for on-line measurement of relative neutron flux density in reactor. Atomic Energy Sci. Technol. 51, 1658–1664 (2017). https://doi.org/10.7538/yzk.2016.youxian.0753 . in Chinese

    Article  Google Scholar 

  7. T.S. Yang, Y.Q. Shi, Q.F. Zhu et al., Measurement of neutron flux density in reactor with thermal analysis method. Atomic Energy Sci. Technol. 50, 1630–1633 (2016). https://doi.org/10.7538/yzk.2016.50.09.1629. in Chinese

    Article  Google Scholar 

  8. L. Deng, C. Deng, Study on neutron flux density simulation. Nuclear Power Eng. 20, 210–213 (1999). https://doi.org/10.1017/CBO9781107415324.004in Chinese

    Article  Google Scholar 

  9. Z.H. Li, Differences and interrelationships among commonly used neutron flux expressions. China J. Nuclear Sci. Eng. 13, 278–282 (1993). (in Chinese)

    Google Scholar 

  10. L.J. Yang, S.Z. Zhao, W. Zhang, Relationship of burnup and neutron emission intensity for spent fuel. Atomic Energy Sci. Technol. 43, 1106–1109 (2009). (in Chinese)

    Google Scholar 

  11. L.L. Liu, X.Z. Wu, Y.J. Chen et al., Study of fission dynamics with a three-dimensional Langevin approach. Phys. Rev. C 99, 1–10 (2019). https://doi.org/10.1103/PhysRevC.99.044614

    Article  Google Scholar 

  12. G.X. Dong, Y.J. Chen, X.B. Wang et al., Mass distributions of fission fragments for n+233U reaction investigated by GEF model. Sci. Sin. Physica, Mech. Astron. (2019). https://doi.org/10.1360/sspma-2019-0222

    Article  Google Scholar 

  13. Z.A. Wang, J.C. Pei, Y. Liu et al., Bayesian evaluation of incomplete fission yields. Phys. Rev. Lett. 123, 122501 (2019). https://doi.org/10.1103/PhysRevLett.123.122501

    Article  ADS  Google Scholar 

  14. H. Tao, J. Zhao, Z.P. Li et al., Microscopic study of induced fission dynamics of Th 226 with covariant energy density functionals. Phys. Rev. C 96, 1–10 (2017). https://doi.org/10.1103/PhysRevC.96.024319

    Article  Google Scholar 

  15. N. Wang, W. Ye, Probing nuclear dissipation with first-chance fission probability. Phys. Rev. C 97, 1–7 (2018). https://doi.org/10.1103/PhysRevC.97.014603

    Article  Google Scholar 

  16. O. Leray, L. Fiorito, D. Rochman et al., Uncertainty propagation of fission product yields to nuclide composition and decay heat for a PWR UO2 fuel assembly. Prog. Nucl. Energ. 101, 486–495 (2017). https://doi.org/10.1016/j.pnucene.2017.05.033

    Article  Google Scholar 

  17. D. Rochman, O. Leray, A. Vasiliev et al., A Bayesian Monte Carlo method for fission yield covariance information. Ann. Nucl. Energy 95, 125–134 (2016). https://doi.org/10.1016/j.anucene.2016.05.005

    Article  Google Scholar 

  18. D.F. da Cruz, D. Rochman, A.J. Koning, Quantification of uncertainties due to \(^{235,238}\)U, \(^{239,240,241}\)Pu and fission products nuclear data uncertainties for a PWR fuel assembly. Nucl. Data Sheets 118, 531–534 (2014). https://doi.org/10.1016/j.nds.2014.04.126

    Article  ADS  Google Scholar 

  19. D. Ramos, M. Caamaño, F. Farget et al., Insight into excitation energy and structure effects in fission from isotopic information in fission yields. Phys. Rev. C 99, 1–11 (2019). https://doi.org/10.1103/PhysRevC.99.024615

    Article  Google Scholar 

  20. P. Möller, D.G. Madland, A.J. Sierk et al., Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space. Nature 409, 785–790 (2001). https://doi.org/10.1038/35057204

    Article  ADS  Google Scholar 

  21. U. Brosa, S. Grossmann, A. Müller et al., Nuclear scission. Nucl. Phys. A 502, 423–442 (1989). https://doi.org/10.1016/0375-9474(89)90680-5

    Article  ADS  Google Scholar 

  22. H. Paşca, A.V. Andreev, G.G. Adamian et al., Toward an understanding of the anomaly in charge yield of Mo and Sn fragments in the fission reaction \(^{238}\)U(n, f). Phys. Rev. C 98, 1–3 (2018). https://doi.org/10.1103/PhysRevC.98.014624

    Article  Google Scholar 

  23. C.K. Zheng, H.J. Jiang,, The fission yield of 235U and 238U induced by mono-neutron. China Nuclear Science And Technology Report, 5. (1993). CNKI:SUN:ZHBG.0.1993-00-005. (in Chinese)

  24. R. Wigeland, T. Taiwo, H. Ludewig et al., Nuclear fuel cycle evaluation and screening. INL/EXT-14-31465 (2014)

  25. V.D. Sevast’yanov, A.S. Koshelev, G.N. Maslov, Investigating the thermal and epithermal neutron spectra in the moderators of nuclear reactors. Instrum. Exp. Techn. 47, 731–743 (2004). https://doi.org/10.1023/b:inet.0000049691.40579.5e

    Article  Google Scholar 

  26. Y.J. Chen, M. Jia, T.J. Liu et al., Calculation of prompt fission neutron spectrum for 233U(n, f) reaction by the semi-empirical method. Chin. Phys. C 38, 5 (2014). https://doi.org/10.1088/1674-1137/38/5/054001

    Article  Google Scholar 

  27. R.D. Kale, India’s fast reactor programme: a review and critical assessment advanced fuel development with high breeding ratio. Prog. Nucl. Energ. 122, 103–265 (2020). https://doi.org/10.1016/j.pnucene.2020.103265

    Article  Google Scholar 

  28. A. Zhang, C.Y. Zou, J.H. Wu et al., Radiotoxicity of minor actinides in thermal, epithermal and fast TMSRs with very high burnup. Ann. Nucl. Energy 137, 107–162 (2020). https://doi.org/10.1016/j.anucene.2019.107162

    Article  Google Scholar 

  29. W.C. Hu, B. Liu, X.P. Ouyang et al., Minor actinide transmutation on PWR burnable poison rods. Ann. Nucl. Energy 77, 74–82 (2015). https://doi.org/10.1016/j.anucene.2014.10.036

    Article  Google Scholar 

  30. S.C. Zhou, H.C. Wu, Y.Q. Zheng, Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios. Ann. Nucl. Energy 111, 271–279 (2018). https://doi.org/10.1016/j.anucene.2017.08.037

    Article  Google Scholar 

  31. Arkoma Asko, Huhtanen Risto, Leppänen Jaakko, Peltola Juho, Pättikangas. Timo, Calculation chain for the analysis of spent nuclear fuel in long-term interim dry storage. Ann. Nucl. Energy 119, 129–138 (2018). https://doi.org/10.2172/809946

    Article  Google Scholar 

  32. A.C. Wahl,, Systematics of fission-product yields.Technical Report LA-13928, (2002) https://doi.org/10.2172/809946

  33. S. Okumura, T. Kawano, P. Jaffke et al., 235U(n, f) Independent fission product yield and isomeric ratio calculated with the statistical Hauser–Feshbach theory. J. Nucl. Sci. Technol. 55, 1009–1023 (2018). https://doi.org/10.1080/00223131.2018.1467288

    Article  Google Scholar 

  34. A.V. Andreev, G.G. Adamian, N.V. Antonenko et al., Possible explanation of fine structures in mass-energy distribution of fission fragments. Euro. Phys. J. A 22, 51–60 (2004). https://doi.org/10.1140/epja/i2004-10017-9

    Article  ADS  Google Scholar 

  35. L.L. Liu, N.C. Shu, T.J. Liu et al., Study on mass distribution of n+233U fission with phenomenological model. Nucl. Phys. Rev. 30, 374–378 (2013). https://doi.org/10.11804/NuclPhysRev.30.03.374

    Article  Google Scholar 

  36. L. Zhu, P.W. Wen, C.J. Lin et al., Shell effects in a multinucleon transfer process. Phys. Rev. C 97, 1–10 (2018). https://doi.org/10.1103/PhysRevC.97.044614

    Article  Google Scholar 

  37. I. Dutt, R.K. Puri, Comparison of different proximity potentials for asymmetric colliding nuclei. Phys. Rev. C 81, 1–12 (2010). https://doi.org/10.1103/PhysRevC.97.044614

    Article  Google Scholar 

  38. N.C. Shu, Y.J. Chen, T.J. Liu et al., Semi-empirical study on the yield energy-dependence of the 235U + n fission. J. Korean Phys. Soc. 59, 1353–1356 (2011). https://doi.org/10.3938/jkps.59.1353

    Article  ADS  Google Scholar 

  39. J. Lee, C.S. Gil, Y.O. Lee et al., Calculation of fission product yields for uranium isotopes by using a semi-empirical model. Euro. Phys. J. A 54, 173 (2018). https://doi.org/10.1140/epja/i2018-12607-2

    Article  ADS  Google Scholar 

  40. J. Benlliure, A. Grewe, M.D. Jong et al., Calculated nuclide production yields in relativistic collisions of fissile nuclei. Nucl. Phys. A 628, 458–478 (1998). https://doi.org/10.1016/S0375-9474(97)00607-6

    Article  ADS  Google Scholar 

  41. A.C. Wahl, Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U, 233U and 239Pu and for spontaneous fission of 252Cf. At. Data Nucl. Data Tables 39, 1–156 (1988). https://doi.org/10.1016/0092-640X(88)90016-2

    Article  ADS  Google Scholar 

  42. H. Naik, R.J. Singh, R.H. Lyer, Charge distribution studies in the fast-neutron-induced fission of 232Th, 238U, 240Pu and 244Cm. Eur. Phys. J. A 16, 495–507 (2003). https://doi.org/10.1140/epja/i2002-10122-9

    Article  ADS  Google Scholar 

  43. H.W. Wiese, Actinide transmutation properties of thermal and fast fission reactors including multiple recycling. J. Alloy. Compd. 271–273, 522–529 (1998). https://doi.org/10.1016/S0925-8388(98)00141-8

    Article  Google Scholar 

  44. L. Zhang, Y.W. Yang, Y.G. Fu et al., Development and validation of the code COUPLE3.0 for the coupled analysis of neutron transport and burnup in ADS. Nucl. Sci. Tech. 29, 124 (2018). https://doi.org/10.1007/s41365-018-0471-4

    Article  ADS  Google Scholar 

  45. W.J. Maeck, A.L. Erikson, R.L. Tromp, Fast reactor fission yields for 241Pu and relative fission product isotopic data for 239Pu irradiated in Row-4 of EBR-II. Exxon Nuclear Idaho Co.. (1980)

  46. W.J. Maeck, R.L. Eggleston, A.L. Erikson et al., Fast Reactor Fission Yields for 240Pu and 242Pu (Allied Chemical Corp, Morristown, 1979)

    Google Scholar 

  47. R. Brissot, J. Crançon, Ch. Ristori et al., istributions isotopiques des gaz rares et de leurs precurseurs dans la fission thermique de 239,241Pu: Etude de l’effet “pair-impair’’. Nucl. Phys. A 282, 109–124 (1977). https://doi.org/10.1016/0375-9474(77)90174-9

    Article  ADS  Google Scholar 

  48. W.A. Myers, M.V. Kantelo, R.L. Osborne et al., Fast Neutron Fission of 240Pu. Phys. Rev. C 18, 1700 (1978). https://doi.org/10.1103/PhysRevC.18.1700

    Article  ADS  Google Scholar 

  49. H. Naik, A.G.C. Nair, P.C. Kalsi et al., Absolute fission yields in the fast neutron induced fission of 99.9997 Atom% pure 238U using track etch-cum gamma spectrometric technique. Radiochimica Acta 75, 69–76 (1996). https://doi.org/10.1524/ract.1996.75.2.69

    Article  Google Scholar 

  50. J.E. Gindler, L.E. Glendenin, D.J. Henderson et al., Mass distributions in monoenergetic-neutron-induced fission of 239Pu. Phys. Rev. C 27, 2058–2062 (1983). https://doi.org/10.1103/PhysRevC.27.2058

    Article  ADS  Google Scholar 

  51. J.K. Dickens, J.W. McConnell, Fission product yields for thermal-neutron fission of plutonium-239. Nucl. Sci. Eng. 73, 42–55 (1980). https://doi.org/10.13182/NSE80-A18707

    Article  Google Scholar 

  52. S. Nagy, K.F. Flynn, J.E. Gindler et al., Mass distributions in monoenergetic-neutron-induced fission of 238U. Phys. Rev. C 17, 163–171 (1978). https://doi.org/10.1103/PhysRevC.17.163

    Article  ADS  Google Scholar 

  53. L.E. Glendenin, J.E. Gindler, D.J. Henderson et al., Mass distributions for monoenergetic-neutron-induced fission of 235U. Phys. Rev. C 24, 2600–2605 (1981). https://doi.org/10.1103/PhysRevC.24.2600

    Article  ADS  Google Scholar 

  54. A.I. Sergachev, N.P. Dyachenko, A.M. Kovalev et al., Influence of excitation energy on the mass and kinetic energy distributions of 233U fission fragments. Sov. J. Nuclear Phys.-USSR 16, 266 (1973)

    Article  Google Scholar 

  55. W.J. Maeck, Fast Reactor Fission Yields for 233U, 235U, 238U, 239 Pu, and Recommendations for the Determination of Burnup on FBR Mixed Oxide Fuels (Allied Chemical Corp, Morristown, 1975)

    Google Scholar 

  56. R.B. Strittmatter, B.W. Wehring, Fragment atomic-number identification using a gas ionization chamber in fission yield measurements. Nucl. Instrum Methods 166, 473–481 (1979). https://doi.org/10.1016/0029-554X(79)90537-8

    Article  ADS  Google Scholar 

  57. R. Brissot, J. Crançon, Ch. Ristori et al., Distributions isotopiques des gaz rares dans la fission par neutrons thermiques de 235U et 233U. Nucl. Phys. A 255, 461 (1975). https://doi.org/10.1016/0375-9474(75)90693-4

    Article  ADS  Google Scholar 

  58. S.J. Balestrini, R. Decker, H. Wollnik et al., Independent yields of Rb and Cs isotopes from thermal-neutron induced fission of 235U. Phys. Rev. C 20, 2244–2248 (1979). https://doi.org/10.1103/PhysRevC.20.2244

    Article  ADS  Google Scholar 

  59. W. Reisdorf, J.P. Unik, H.C. Griffin et al., Fission fragment K x-ray emission and nuclear charge distribution for thermal neutron fission of 233U, 235U, 239Pu and spontaneous fission of 252Cf. Nucl. Phys. A 177, 337–378 (1971). https://doi.org/10.1016/0375-9474(71)90297-1

    Article  ADS  Google Scholar 

  60. K. Wang, B. Liu, W.C. Hu et al., The effect to the nuclear reactor after the actinide nuclides added to the nuclear fuel. Chin. J. Nucl. Sci. Eng. 32, 205–211 (2012). (in Chinese)

    Google Scholar 

  61. H.J. Amster, The Wigner-Wilkins calculated thermal neutron spectra compared with measurements in a water moderator. Nucl. Sci. Eng. 2, 394–404 (1957). https://doi.org/10.13182/nse57-a25404

    Article  Google Scholar 

  62. L. Cranberg, G. Frye, N. Nereson et al., Fission neutron spectrum of 235U. Phys. Rev. 103, 662–670 (1956). https://doi.org/10.1103/PhysRev.103.662

    Article  ADS  Google Scholar 

  63. T. He, P. Zheng, J. Xiao, Measurement of the prompt neutron spectrum from thermal-neutron-induced fission in235U using the recoil proton method. Nucl. Sci. Tech. 30, 112 (2019). https://doi.org/10.1007/s41365-019-0633-z

    Article  Google Scholar 

  64. J.A.D. Salomé, F. Cardoso, C.E. Velasquez et al., VHTR, ADS, and PWR spent nuclear fuel analysis. Procedia Chem. 21, 255–262 (2016). https://doi.org/10.1016/j.proche.2016.10.036

    Article  Google Scholar 

  65. J.D. Chen, F.X. Yu, K.Y. Cai et al., Daya Bay Nuclear Power Station System and Operation (Atomic Energy Press, Beijing, 1995). (in Chinese)

    Google Scholar 

  66. J.R. Burns, R. Hernandez, K.A. Terrani et al., Reactor and fuel cycle performance of light water reactor fuel with 235U enrichments above 5%. Ann. Nucl. Energy 142, 107423 (2020). https://doi.org/10.1016/j.anucene.2020.107423

    Article  Google Scholar 

  67. Private communication with Engineer C.S. Zhou at Daya Bay nuclear power plant in February, 2020

  68. D.Y. Cui, S.P. Xia, X.X. Li et al., Transition toward thorium fuel cycle in a molten salt reactor by using plutonium. Nucl. Sci. Tech. 28, 152 (2017). https://doi.org/10.1007/s41365-017-0303-y

    Article  Google Scholar 

  69. W.F. Wang, Nuclear reactor physics advanced operations training materials. JNPC 169(2017)

  70. A. Trkov, R. Capote, V.G. Pronyaev, current issues in nuclear data evaluation methodology:235U prompt fission neutron spectra and multiplicity for thermal neutrons. Nucl. Data Sheets 123, 8–15 (2015). https://doi.org/10.1016/j.nds.2014.12.003

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Li-Le Liu and Chao-Sheng Zhou for their useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ze-Xin Fang, Meng Yu, and Long Zhu. The first draft of the manuscript was written by Ze-Xin Fang and Meng Yu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Long Zhu.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11605296) and the Natural Science Foundation of Guangdong Province, China (No. 2016A030310208), and Fundamental Research Funds for Central Universities (No. 18lgpy87).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, ZX., Yu, M., Huang, YG. et al. Theoretical analysis of long-lived radioactive waste in pressurized water reactor. NUCL SCI TECH 32, 72 (2021). https://doi.org/10.1007/s41365-021-00911-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00911-0

Keywords

Navigation