Skip to main content

Advertisement

Log in

Charge resolution in the isochronous mass spectrometry and the mass of \(^{51}\)Co

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Isochronous mass spectrometry (IMS) of heavy-ion storage rings is a powerful tool for the mass measurements of short-lived nuclei. In IMS experiments, masses are determined through precision measurements of the revolution times of the ions stored in the ring. However, the revolution times cannot be resolved for particles with nearly the same mass-to-charge (m/q) ratios. To overcome this limitation and to extract the accurate revolution times for such pairs of ion species with very close m/q ratios, in our early work on particle identification, we analyzed the amplitudes of the timing signals from the detector based on the emission of secondary electrons. Here, the previous data analysis method is further improved by considering the signal amplitudes, detection efficiencies, and number of stored ions in the ring. A sensitive Z-dependent parameter is introduced in the data analysis, leading to a better resolution of \(^{34}\)Ar\(^{18+}\) and \(^{51}\)Co\(^{27+}\) with \(A/Z=17/9\). The mean revolution times of \(^{34}\)Ar\(^{18+}\) and \(^{51}\)Co\(^{27+}\) are deduced, although their time difference is merely 1.8 ps. The uncorrected, overlapped peak of these ions has a full width at half maximum of 7.7 ps. The mass excess of \(^{51}\)Co was determined to be \(-27{,}332(41)\) keV, which is in agreement with the previous value of \(-27{,}342(48)\) keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Hausmann, F. Attallah, K. Beckert et al., First isochronous mass spectrometry at the experimental storage ring ESR. Nucl. Instrum. Methods Phys. Res. A 446, 569 (2000). https://doi.org/10.1016/S0168-9002(99)01192-4

    Article  Google Scholar 

  2. M. Hausmann, J. Stadlmann, F. Attallah et al., Isochronous mass measurements of hot exotic nuclei. Hyperfine Interact. 132, 291–297 (2001). https://doi.org/10.1023/A:1011911720453

    Article  Google Scholar 

  3. Yu.A. Litvinov, S. Bishop, K. Blaum et al., Nuclear physics experiments with ion storage rings. Nucl. Instrum. Methods Phys. Res. B 317, 603–616 (2013). https://doi.org/10.1016/j.nimb.2013.07.025

    Article  Google Scholar 

  4. F. Bosch, Yu.A. Litvinov, Th. Stöhlker, Nuclear physics with unstable ions at storage rings. Prog. Part. Nucl. Phys. 73, 84–140 (2013). https://doi.org/10.1016/j.ppnp.2013.07.002

    Article  Google Scholar 

  5. Y.H. Zhang, Yu.A. Litvinov, T. Uesaka et al., Storage ring mass spectrometry for nuclear structure and astrophysics research. Phys. Scr. 91, 073002 (2016). https://doi.org/10.1088/0031-8949/91/7/073002

    Article  Google Scholar 

  6. M. Steck, Yu.A. Litvinov, Heavy-ion storage rings and their use in precision experiments with highly charged ions. Prog. Part. Nucl. Phys. 115, 103811 (2020). https://doi.org/10.1016/j.ppnp.2020.103811

    Article  Google Scholar 

  7. B. Mei, H.S. Xu, Y.H. Zhang et al., Odd-even staggering in yields of neutron-deficient nuclei produced by projectile fragmentation. Phys. Rev. C 94, 044615 (2016). https://doi.org/10.1103/PhysRevC.94.044615

    Article  Google Scholar 

  8. C.W. Ma, Y.D. Song, H.L. Wei, Binding energies of near proton-drip line Z = 22–28 isotopes determined from measured isotopic cross section distributions. Sci. China Phys. Mech. Astron. 62, 012013 (2019). https://doi.org/10.1007/s11433-018-9256-8

    Article  Google Scholar 

  9. Y.D. Song, H.L. Wei, C.W. Ma, J.H. Chen, Improved FRACS parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions. Nucl. Sci. Tech. 29, 96 (2018). https://doi.org/10.1007/s41365-018-0439-4

    Article  Google Scholar 

  10. J. Trötscher, K. Balog, H. Eickhoff et al., Mass measurements of exotic nuclei at the ESR. Nucl. Instrum. Methods Phys. Res. B 70, 455–458 (1992). https://doi.org/10.1016/10.1016/0168-583X(92)95965-T

    Article  Google Scholar 

  11. B. Mei, X.L. Tu, M. Wang et al., A high performance time-of-Flight detector applied to isochronous mass measurement at CSRe. Nucl. Instrum. Methods Phys. Res. A 624, 109 (2010). https://doi.org/10.1016/j.nima.2010.09.001

    Article  Google Scholar 

  12. W. Zhang, X.L. Tu, M. Wang et al., Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe. Nucl. Instrum. Methods Phys. Res. A 756, 1 (2014). https://doi.org/10.1016/j.nima.2014.04.051

    Article  Google Scholar 

  13. T. Yamaguchi for the Rare RI Ring Collaboration, Present status of Rare-RI Ring facility at RIBF. Phys. Scr. T166, 014039 (2015). https://doi.org/10.1088/0031-8949/2015/T166/014039

  14. X.L. Tu, M. Wang, Yu.A. Litvinov et al., Precision isochronous mass measurements at the storage ring CSRe in Lanzhou. Nucl. Instrum. Methods Phys. Res. A 654, 213 (2011). https://doi.org/10.1016/j.nima.2011.07.018

    Article  Google Scholar 

  15. Y.M. Xing, Y.H. Zhang, M. Wang et al., Particle identification and revolution time corrections for the isochronous mass spectrometry in storage rings. Nucl. Instrum. Methods Phys. Res. A 941, 162331 (2019). https://doi.org/10.1016/j.nima.2019.06.072

    Article  Google Scholar 

  16. P.F. Liang, L.J. Sun, J. Lee et al., Simultaneous measurement of \(\beta\)-delayed proton and \(\gamma\) emission of \(^{26}\)P for the \(^{25}\)Al(\(p,\gamma\)), \(^{26}\)Si reaction rate. Phys. Rev. C 101, 024305 (2020). https://doi.org/10.1023/A:10119117204530

    Article  Google Scholar 

  17. B.H. Sun, J.W. Zhao, X.H. Zhang et al., Towards the full realization of the RIBLL2 beam line at the HIRFL-CSR complex. Sci. Bull. 63, 78 (2018). https://doi.org/10.1016/j.scib.2017.12.005

    Article  Google Scholar 

  18. Y. Yamaguchi, M. Wakasugi, T. Uesaka et al., Construction of rare-RI ring at RIKEN RI beam factory. Nucl. Instrum. Methods Phys. Res. 317, 629–635 (2013). https://doi.org/10.1016/j.nimb.2013.06.004

    Article  Google Scholar 

  19. T. Yamaguchi, Y. Yamaguchi, A. Ozawa, The challenge of precision mass measurements of short-lived exotic nuclei: development of a new storage ring mass spectrometry. Int. J. Mass Spectr. 349–350, 240–246 (2013). https://doi.org/10.1016/j.ijms.2013.04.027

    Article  Google Scholar 

  20. J.W. Xia, W.L. Zhan, B.W. Wei et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl. Instrum. Methods Phys. Res. A 488, 11–25 (2002). https://doi.org/10.1016/S0168-9002(02)00475-8

    Article  Google Scholar 

  21. B. Franzke, H. Geissel, G. Münzenberg, Mass and lifetime measurements of exotic nuclei in storage rings. Mass Spectr. Rev. 27, 428–469 (2008). https://doi.org/10.1023/A:10119117204535

    Article  Google Scholar 

  22. C.Y. Fu, Y.H. Zhang, M. Wang et al., Mass measurements for the \(T_{z}=-2\)\(fp\)-shell nuclei \(^{40}\)Ti, \(^{44}\)Cr, \(^{46}\)Mn, \(^{48}\)Fe, \(^{50}\)Co, and \(^{52}\)Ni. Phys. Rev. C 102, 054311 (2020). https://doi.org/10.1023/A:10119117204536

    Article  Google Scholar 

  23. X. Xu, M. Wang, K. Blaum et al., Masses of neutron-rich \(^{52\text{- }54}{{\rm Sc}} \text{ and } ^{54,56}{{\rm Ti}}\) nuclides: the \(N=32\) subshell closure in scandium. Phys. Rev. C 99, 064303 (2019). https://doi.org/10.1103/PhysRevC.99.064303

    Article  Google Scholar 

  24. X. Xu, J.H. Liu, C.X. Yuan et al., Masses of ground and isomeric states of \(^{101}\)In and configuration-dependent shell evolution in odd-\(A\) indium isotopes. Phys. Rev. C 100, 051303(R) (2019). https://doi.org/10.1103/PhysRevC.100.051303

    Article  Google Scholar 

  25. Y.H. Zhang, P. Zhang, X.H. Zhou et al., Isochronous mass measurements of \({T}_{z}={-}1 fp\)-shell nuclei from projectile fragmentation of \(^{58}\)Ni. Phys. Rev. C 98, 014319 (2018). https://doi.org/10.1103/PhysRevC.98.014319

    Article  Google Scholar 

  26. C.Y. Fu, Y.H. Zhang, X.H. Zhou et al., Masses of the \({T}_{z}={-}3/2\) nuclei \(^{27}{{\rm P and }}^{29}\)S. Phys. Rev. C 98, 014315 (2018). https://doi.org/10.1103/PhysRevC.98.014315

    Article  Google Scholar 

  27. M.Z. Sun, X.H. Zhou, M. Wang et al., Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou. Front. Phys. 13(6), 132112 (2018). https://doi.org/10.1023/A:10119117204539

    Article  Google Scholar 

  28. X. Xu, P. Zhang, P. Shuai et al., Identification of the lowest \(T=2\), \({J}^{{\pi }}={0}^{+}\) isobaric analog state in \(^{52}\) Co and its impact on the understanding of \({\beta }\)-decay properties of \(^{52}\)Ni. Phys. Rev. Lett. 117, 182503 (2016). https://doi.org/10.1103/PhysRevLett.117.182503

    Article  Google Scholar 

  29. X. Xu, M. Wang, Y.H. Zhang et al., Direct mass measurements of neutron-rich \(^{86}\)Kr projectile fragments and the persistence of neutron magic number N=32 in Sc isotopes. Chin. Phys. C 39, 104001 (2015). https://doi.org/10.1016/j.ppnp.2013.07.0020

    Article  Google Scholar 

  30. X. Tu, H. Xu, M. Wang et al., Direct mass measurements of short-lived A = 2Z-1 nuclides \(^{63}\)Ge, \(^{65}\)As, \(^{67}\)Se, and \(^{71}\)Kr and their impact on nucleosynthesis in the rp process. Phys. Rev. Lett. 106, 112501 (2011). https://doi.org/10.1103/PhysRevLett.106.112501

    Article  Google Scholar 

  31. P. Zhang, X. Xu, P. Shuai et al., High-precision \(Q_{EC}\) values of superallowed 0\(^{+}\rightarrow\)0\(^{+}\)\(\beta\)-emitters \(^{46}\)Cr, \(^{50}\)Fe and \(^{54}\)Ni. Phys. Lett. B 767, 20–24 (2017). https://doi.org/10.1016/j.ppnp.2013.07.0022

    Article  Google Scholar 

  32. Y. Xing, K. Li, Y.H. Zhang et al., Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and \(\nu\)p nucleosynthesis processes. Phys. Lett. B 781, 358–363 (2018). https://doi.org/10.1016/j.ppnp.2013.07.0023

    Article  Google Scholar 

  33. P. Shuai, H.S. Xu, X.L. Tu et al., Charge and frequency resolved isochronous mass spectrometry and the mass of \(^{51}\)Co. Phys. Lett. B 735, 327 (2014). https://doi.org/10.1016/j.ppnp.2013.07.0024

    Article  Google Scholar 

  34. Y.H. Zhang, H.S. Xu, Yu.A. Litvinov et al., Mass measurements of the neutron-deficient \(^{41}\)Ti, \(^{45}\)Cr, \(^{49}\)Fe, and \(^{53}\)Ni nuclides: First test of the isobaric multiplet mass equation in \(fp\)-shell nuclei. Phys. Rev. Lett. 109, 102501 (2012). https://doi.org/10.1016/j.ppnp.2013.07.0025

    Article  Google Scholar 

  35. X.L. Yan, H.S. Xu, Yu.A. Litvinov et al., Mass measurement of \(^{45}\)Cr and its impact on the Ca-Sc cycle in X-ray bursts. Astrophys. J. Lett. 766, L8 (2013). https://doi.org/10.1016/j.ppnp.2013.07.0026

    Article  Google Scholar 

  36. https://www.photonis.com/

  37. W. Zhang, X.L. Tu, M. Wang et al., A timing detector with pulsed high-voltage power supply for mass measurements at CSRe. Nucl. Instrum. Methods Phys. Res. A 755, 38 (2014). https://doi.org/10.1016/j.nima.2014.04.031

    Article  Google Scholar 

  38. X. Xu, M. Wang, P. Shuai et al., A data analysis method for isochronous mass spectrometry using two time-of-flight detectors at CSRe. Chin. Phys. C 39, 106201 (2015). https://doi.org/10.1016/j.ppnp.2013.07.0028

    Article  Google Scholar 

  39. Y.M. Xing, M. Wang, Y.H. Zhang et al., First isochronous mass measurements with two time-of-flight detectors at CSRe. Phys. Scr. T166, 014010 (2015). https://doi.org/10.1016/j.ppnp.2013.07.0029

    Article  Google Scholar 

  40. P. Shuai, X. Xu, Y.H. Zhang et al., An improvement of isochronous mass spectrometry: velocity measurements using two time-of-flight detectors. Nucl. Instrum. Methods Phys. Res. B 376, 311–315 (2016). https://doi.org/10.1016/j.nimb.2016.02.006

    Article  Google Scholar 

  41. X.L. Yan, R.J. Chen, M. Wang et al., Characterization of a double Time-Of-Flight detector system for accurate velocity measurement in a storage ring using laser beams. Nucl. Instrum. Methods Phys. Res. A 931, 52 (2019). https://doi.org/10.1016/j.nima.2019.03.058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xu Zhou, Meng Wang, Yu-Hu Zhang, Xin-Liang Yan and Peng Shuai. The first draft of the manuscript was written by Xu Zhou and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meng Wang or Yu-Hu Zhang.

Additional information

This work was supported by the National Key R&D Program of China (Nos. 2016YFA0400504 and 2018YFA0404401), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB34000000), the National Natural Science Foundation of China (Nos. 11905261, 11805032, 11975280, and 11605248), the CAS “Light of West China” Program, the China Postdoctoral Science Foundation (No. 2019M660250), the FRIB-CSC Fellowship, China (No. 201704910964), the International Postdoctoral Exchange Fellowship Program 2017 by the Office of China Postdoctoral Council (No. 60 Document of OCPC, 2017), and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (No. 682841 “ASTRUm”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, M., Zhang, YH. et al. Charge resolution in the isochronous mass spectrometry and the mass of \(^{51}\)Co. NUCL SCI TECH 32, 37 (2021). https://doi.org/10.1007/s41365-021-00876-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00876-0

Keywords

Navigation