Skip to main content

Advertisement

Log in

Analysis of influencing factors on the method for determining boron concentration and dose through dual prompt gamma detection

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A method based on the cross-sectional relationship between 10B(n, α)7Li and 1H(n, γ)2H was proposed to detect and reconstruct the three-dimensional boron concentration/dose distribution in vivo during boron neutron capture therapy (BNCT). Factors such as the neutron energy, fluence rate, and degree of non-uniform distribution of the boron concentration in a voxel may affect the results of this method. A theoretical analysis of the accuracy of the method using a Monte Carlo simulation shows that the determining error is generally less than 1% under different tumor locations and neutron source configurations. When the voxel size is larger than 0.4 cm, the determining error might be higher for a non-uniformly distributed boron concentration in the voxel because of the changes in the neutron energy and fluence rate. In conclusion, the proposed method enables an accurate three-dimensional boron determination in vivo during BNCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Wittig, J. Michel, R.L. Moss et al., Boron analysis and boron imaging in biological materials for boron neutron capture therapy (BNCT). Crit. Rev. Oncol. Hematol. 68, 66–90 (2008). https://doi.org/10.1016/j.critrevonc.2008.03.004

    Article  Google Scholar 

  2. R.L. Moss, Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT). Appl. Radiat. Isot. 88, 2–11 (2014). https://doi.org/10.1016/j.apradiso.2013.11.109

    Article  Google Scholar 

  3. S. Hang, X.B. Tang, D.Y. Shu et al., Monte Carlo study of the beam shaping assembly optimization for providing high epithermal neutron flux for BNCT based on D-T neutron generator. J. Radioanal. Nucl. Chem. 310, 1289–1298 (2016). https://doi.org/10.1007/s10967-016-5001-4

    Article  Google Scholar 

  4. M. Peng, G.Z. He, Q.W. Zhang et al., Study of neutron production and moderation for sulfur neutron capture therapy. Nucl. Sci. Tech. 30, 2 (2019). https://doi.org/10.1007/s41365-018-0529-3

    Article  Google Scholar 

  5. Y. Gong, X.C. Guan, Q. Wang et al., Design of moderator for boron neutron capture therapy based on D-D neutron source. Nucl. Tech. 43, 090303 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.090303(in Chinese)

    Article  Google Scholar 

  6. G.J. Chen, J.Y. Yang, G. Lu et al., One stone kills three birds: novel boron-containing vesicles for potential BNCT, controlled drug release, and diagnostic imaging. J. Mol. Pharm. 11, 3291–3299 (2014). https://doi.org/10.1021/mp400641u

    Article  Google Scholar 

  7. T. Yamamoto, A. Matsumura, K. Nakai et al., Current clinical results of the Tsukuba BNCT trial. Appl. Radiat. Isot. 61, 1089–1093 (2004)

    Article  Google Scholar 

  8. S.J. González, M.R. Bonomi, G.A. Santa et al., First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl. Radiat. Isot. 61, 1101–1105 (2004). https://doi.org/10.1016/j.apradiso.2004.05.060

    Article  Google Scholar 

  9. E. Shimosegawa, K. Isohashi, S. Naka et al., Assessment of 10 B concentration in boron neutron capture therapy: potential of image-guided therapy using 18 FBPA PET. Ann. Nucl. Med. 30, 749–755 (2016). https://doi.org/10.1007/s12149.016.1121.8

    Article  Google Scholar 

  10. T. Watabe, K. Hanaoka, S. Naka et al., Practical calculation method to estimate the absolute boron concentration in tissues using 18 F-FBPA PET. Ann. Nucl. Med. 31, 481–485 (2017). https://doi.org/10.1007/s12149.017.1172.5

    Article  Google Scholar 

  11. T. Aihara, J. Hiratsuka, N. Morita et al., First clinical case of boron neutron capture therapy for head and neck malignancies using 18 F-BPA PET. Head Neck J. Sci. Spec. Head Neck 28, 850–855 (2006). https://doi.org/10.1002/hed.20418

    Article  Google Scholar 

  12. S. Fatemi, C.H. Gong, S. Bortolussi et al., Innovative 3D sensitive CdZnTe solid state detector for dose monitoring in boron neutron capture therapy (BNCT). Nucl. Instrum Methods Phys. Res. Sect A Accel. Spectrom. Detect. Assoc. Equip. 936, 50–51 (2019). https://doi.org/10.1016/j.nima.2018.09.135

    Article  Google Scholar 

  13. I. Murata, S. Nakamura, M. Manabe et al., Characterization measurement of a thick CdTe detector for BNCT-SPECT–Detection efficiency and energy resolution. Appl. Radiat. Isot. 88, 129–133 (2014). https://doi.org/10.1016/j.apradiso.2014.01.023

    Article  Google Scholar 

  14. X.L. Shen, P. Gong, X.B. Tang et al., Encoding methods matching the 16×16 pixel CZT detector of a coded aperture gamma camera. Nucl. Sci. Tech. 31, 92 (2020). https://doi.org/10.1007/s41365-020-00796-5

    Article  Google Scholar 

  15. I. Murata, T. Mukai, S. Nakamura et al., Development of a thick CdTe detector for BNCT-SPECT. Appl. Radiat. Isot. 69, 1706–1709 (2011). https://doi.org/10.1016/j.apradiso.2011.05.014

    Article  Google Scholar 

  16. S. Fatemi, S. Altieri, S. Bortolussi et al., Preliminary characterization of a CdZnTe photon detector for BNCT-SPECT. . Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 903, 134–139 (2018). https://doi.org/10.1016/j.nima.2018.06.068

    Article  Google Scholar 

  17. D.M. Minsky, A. Valda, A.J. Kreiner et al., Progress in the development of a tomographic SPECT system for online dosimetry in BNCT. AIP Conf. Proc. 1265, 415–418 (2010). https://doi.org/10.1063/1.3480218

    Article  Google Scholar 

  18. D.M. Minsky, A.A. Valda, A.J. Kreiner et al., Experimental feasibility studies on a SPECT tomograph for BNCT dosimetry. Appl. Radiat. Isot. 67, 179–182 (2009). https://doi.org/10.1016/j.apradiso.2009.03.044

    Article  Google Scholar 

  19. M. Kim, B.H. Hong, I. Cho et al., Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: comparison of SrI2 and GAGG using Monte-Carlo simulation. Nucl. Eng. Technol. 53, 626–636 (2021). https://doi.org/10.1016/j.net.2020.07.010

    Article  Google Scholar 

  20. B. Hales, T. Katabuchi, M. Igashira et al., Predicted performance of a PG-SPECT system using CZT primary detectors and secondary Compton-suppression anti-coincidence detectors under near-clinical settings for boron neutron capture therapy. Nucl. Instrum Methods Phys. Res. Sect A Accel. Spectrom. Detect. Assoc. Equip. 875, 1–56 (2017). https://doi.org/10.1016/j.nima.2017.09.009

    Article  Google Scholar 

  21. C.H. Gong, X.B. Tang, S. Fatemi et al., A Monte Carlo study of SPECT in boron neutron capture therapy for a heterogeneous human phantom. Int. J. Radiat. Res. 16, 33–43 (2018). https://doi.org/10.18869/acadpub.ijrr.16.1.33

    Article  Google Scholar 

  22. M. Patino, A. Prochowski, M.D. Agrawal et al., Material separation using dual-energy CT: current and emerging applications. Radiographics 36, 1087–1105 (2016). https://doi.org/10.1148/rg.2016150220

    Article  Google Scholar 

  23. M. Yang, G. Virshup, J. Clayton et al., Theoretical variance analysis of single-and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues. Phys. Med. Biol. 55, 1343–1362 (2010). https://doi.org/10.1088/0031-9155/55/5/006

    Article  Google Scholar 

  24. C.R. Geng, Y. Ai, X.B. Tang et al., Quantum dots enhanced Cerenkov luminescence imaging. Nucl. Sci. Tech. 30, 71 (2019). https://doi.org/10.1007/s41365-019-0599-x

    Article  Google Scholar 

  25. X.D. Zhang, Y.H. Liu, X.B. Tang et al., Strategies for accurate response assessment of radiochromic film using flatbed scanner for beam quality assurance. Nucl. Sci. Tech. 30, 160 (2019). https://doi.org/10.1007/s41365-019-0685-0

    Article  Google Scholar 

  26. J.P. He, X.B. Tang, P. Gong et al., Spectrometry analysis based on approximation coefficients and deep belief networks. Nucl. Sci. Tech. 29, 69 (2018). https://doi.org/10.1007/s41365-018-0402-4

    Article  Google Scholar 

  27. G. Chiba, K. Okumura, K. Sugino et al., JENDL-4.0 benchmarking for fission reactor applications. J. Nucl. Sci. Technol. 48, 172–187 (2011). https://doi.org/10.1080/18811248.2011.9711692

    Article  Google Scholar 

  28. K. Shibata, O. Iwamoto, T. Nakagawa et al., JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48, 1–30 (2011). https://doi.org/10.1080/18811248.2011.9711675

    Article  Google Scholar 

  29. J. Perl, J. Shin, J. Schümann et al., TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med. Phys. 39, 6818–6837 (2012). https://doi.org/10.1118/1.4758060

    Article  Google Scholar 

  30. J. Allison, K. Amako, J.E. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  31. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  32. C.R. Geng, X.B. Tang, F.D. Guan et al., GEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom. Radiat. Prot. Dosim. 168, 433–440 (2015). https://doi.org/10.1093/rpd/ncv364

    Article  Google Scholar 

  33. S.J. Wu, C.R. Geng, X.B. Tang et al., Dosimetric impact of respiratory motion during boron neutron capture therapy for lung cancer. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2019.108527

    Article  Google Scholar 

  34. X.X. Zhang, C.R. Geng, X.B. Tang et al., Assessment of long-term risks of secondary cancer in pediatric patients with brain tumor after boron neutron capture therapy. J. Radiol. Prot. 39, 838–853 (2019). https://doi.org/10.1088/1361-6498/ab29a3

    Article  Google Scholar 

  35. D.R. White, R.V. Griffith, I.J. Wilson (1992) Report 46. J. Int. Comm. Radiat. Units Meas. 28:NP–NP

  36. W.S. Kiger, S. Sakamoto, O.K. Harling, Neutronic design of a fission converter-based epithermal neutron beam for neutron capture therapy. Nucl. Sci. Eng. 131, 1–22 (1999). https://doi.org/10.13182/NSE99-A2015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Feng Tian, Chang-Ran Geng, and Xiao-Bin Tang. The first draft of the manuscript was written by Feng Tian and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Bin Tang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11805100 and 11905106) and the Fundamental Research Funds for the Central Universities (No. NG2020003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Geng, CR., Tang, XB. et al. Analysis of influencing factors on the method for determining boron concentration and dose through dual prompt gamma detection . NUCL SCI TECH 32, 35 (2021). https://doi.org/10.1007/s41365-021-00873-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00873-3

Keywords

Navigation