Skip to main content
Log in

Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Heavy water-moderated molten salt reactors (HWMSRs) are novel molten salt reactors that adopt heavy water rather than graphite as the moderator while employing liquid fuel. Owing to the high moderating ratio of the heavy water moderator and the utilization of liquid fuel, HWMSRs can achieve a high neutron economy. In this study, a large-scale small modular HWMSR with a thermal power of 500 MWth was proposed and studied. The criticality of the core was evaluated using an in-house critical search calculation code (CSCC), which was developed based on Standardized Computer Analyses for Licensing Evaluation, version 6.1. The preliminary fuel cycle performances (initial conversion ratio (CR), initial fissile fuel loading mass, and temperature coefficient) were investigated by varying the lattice pitch (P) and the molten salt volume fraction (VF). The results demonstrate that the temperature coefficient can be negative over the range of investigated Ps and VFs for both 233U-Th and LEU-Th fuels. A core with a P of 20 cm and a VF of 20% is recommended for 233U-Th and LEU-Th fuels to achieve a high performance of initial CR and fuel loading. Regarding TRU-Th fuel, a core with a smaller P (~ 5 cm) and larger VF (~ 24%) is recommended to obtain a negative temperature coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U.S. DOE. A technology roadmap for generation IV nuclear energy systems, Philos. Rev. 66(2), 239–241 (2002). https://doi.org/10.2172/859029

  2. T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science. Energy Policy 36(12), 4323–4330 (2008). https://doi.org/10.1016/j.enpol.2008.09.059

    Article  Google Scholar 

  3. J. Serp, M. Allibert, O. Benes et al., The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog. Nucl. Energy 77, 308–319 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014

    Article  Google Scholar 

  4. P.N. Haubenreich, J.R. Engel, Experience with the molten-salt reactor experiment. Nucl. Eng. Technol. 8(2), 118–136 (1970). https://doi.org/10.13182/NT8-2-118

    Article  Google Scholar 

  5. M.W. Rosenthal, P.R. Kasten, R.B. Briggs, Molten-salt reactors—history, status, and potential. Nucl. Eng. Technol. 8(2), 107–117 (1970). https://doi.org/10.13182/NT70-A28619

    Article  Google Scholar 

  6. H.G. MacPherson, The molten salt reactor adventure. Nucl. Sci. Eng. 90(4), 374–380 (1985). https://doi.org/10.13182/NSE90-374

    Article  Google Scholar 

  7. M.E. Whatley, L.E. McNeese, W.L. Carter et al., Engineering development of the MSBR fuel recycle. Nucl. Eng. Technol. 8(2), 170–178 (1970). https://doi.org/10.13182/NT70-A28623

    Article  Google Scholar 

  8. R. C. Robertson, Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor, United States, Technical Report, ORNL-4541 (1971). https://doi.org/10.2172/4030941

  9. J. Krepel, U. Rohde et al., Dynamics of molten salt reactors. Nucl. Technol. 164(1), 34–44 (2008). https://doi.org/10.13182/NT08-A4006

    Article  Google Scholar 

  10. A. Nuttin, D. Heuer, A. Billebaud et al., Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production. Prog. Nucl. Energy 46(1), 77–99 (2005). https://doi.org/10.1016/j.pnucene.2004.11.001

    Article  Google Scholar 

  11. L. Mathieu, D. Heuer, R. Brissot et al., The thorium molten salt reactor: moving on from the MSBR. Prog. Nucl. Energy. 48(7), 664–679 (2006). https://doi.org/10.1016/j.pnucene.2006.07.005

    Article  Google Scholar 

  12. L. Mathieu, D. Heuer, E. Merle-Lucotte et al., Possible configurations for the thorium molten salt reactor and advantages of the fast nonmoderated version. Nucl. Sci. Eng. 161(1), 78–89 (2009). https://doi.org/10.13182/NSE07-49

    Article  Google Scholar 

  13. G.C. Li, Y. Zou, C.G. Yu et al., Model optimization and analysis of Th-U breeding based on MSFR. Nucl. Tech. 40(2), 020603 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.020603(in Chinese)

    Article  Google Scholar 

  14. D.G. Li, G.M. Liu, Analysis of Th-U breeding in molten salt fast reactor. Nucl. Tech. 43(5), 050604 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.050604(in Chinese)

    Article  Google Scholar 

  15. J. Zhou, J.G. Chen, C.G. Yu et al., Influence of 7Li enrichment in FLi/FLiBe on Th-U conversion performance. Nucl. Tech. 42(11), 110601. https://doi.org/10.11889/j.0253-3219.2019.hjs.42.110601(in Chinese)

    Article  Google Scholar 

  16. J. H. Wu, J. G. Chen J, X. Z. Kang et al. A novel concept for a molten salt reactor moderated by heavy water, Ann. Nucl. Energy 132, 391–403 (2019). https://doi.org/10.1016/j.anucene.2019.04.043

  17. S. Delpech, E. Merle-Lucotte, D. Heuer et al., Reactor physic and reprocessing scheme for innovative molten salt reactor system. J. Fluorine Chem. 130(1), 11–17 (2009). https://doi.org/10.1016/j.jfluchem.2008.07.009

    Article  Google Scholar 

  18. V. Ignatiev, O. Feynberg, I. Gnidoi et al., Molten salt actinide recycler and transforming system without and with Th–U support: Fuel cycle flexibility and key material properties. Ann. Nucl. Energy 64, 408–420 (2014). https://doi.org/10.1016/j.anucene.2013.09.004

    Article  Google Scholar 

  19. R.J. Sheu, C.H. Chang, C.C. Chao et al., Depletion analysis on long-term operation of the conceptual Molten Salt Actinide Recycler & Transmuter (MOSART) by using a special sequence based on SCALE6/TRITON. Ann. Nucl. Energy 53, 1–8 (2013). https://doi.org/10.1016/j.anucene.2012.10.017

    Article  Google Scholar 

  20. V. Nian, J. Bauly, Nuclear Power Developments: Could small modular reactor power plants be a "game changer"? - The ASEAN perspective, ICAE2014, 61, 17–20 (2014). https://doi.org/10.1016/j.egypro.2014.11.895

  21. H.R. Trellue, R.J. Kapernick, D.V. Rao et al., Salt-cooled modular innovative thorium heavy water-moderated reactor system. Nucl. Technol. 182(1), 26–38 (2012). https://doi.org/10.13182/NT13-A15823

    Article  Google Scholar 

  22. K. Sasaki, T. Terai, A. Suzuki et al., Effect of the Y2O3 Concentration in YSZ on the thermophysical property as a thermal shielding material. Int. J. Appl. Ceram. Technol. 7(4), 518–527 (2010). https://doi.org/10.1111/j.1744-7402.2009.02363.x

    Article  Google Scholar 

  23. J.Y. Park, SiCf/SiC composites as core materials for Generation IV nuclear reactors. Struct. Mater. Gener. IV Nucl. React 106, 441–470 (2017). https://doi.org/10.1016/B978-0-08-100906-2.00012-4

    Article  Google Scholar 

  24. R. Scarlat, M. Laufer, E. Blandford et al., Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology. Prog. Nucl. Energy 77, 406–420 (2014). https://doi.org/10.1016/j.pnucene.2014.07.002

    Article  Google Scholar 

  25. G.C. Li, Y. Zou, C.G. Yu et al., Influences of Li-7 enrichment on Th-U fuel breeding for an Improved Molten Salt Fast Reactor (IMSFR). Nucl. Sci. Tech. 28(7), 97 (2017). https://doi.org/10.1007/s41365-017-0250-7

    Article  Google Scholar 

  26. C.Y. Zou, C.Z. Cai, C.G. Yu et al., Transition to thorium fuel cycle for TMSR. Nucl. Eng. Des. 330, 420–428 (2018). https://doi.org/10.1016/j.nucengdes.2018.01.033

    Article  Google Scholar 

  27. J. Duderstadt, L. Hamilton, Nuclear Reactor Analysis (Wiley, Hoboken, 1976)

    Google Scholar 

  28. X.X. Li, D.Y. Cui, Y.W. Ma et al., Influence of 235U enrichment on the moderator temperature coefficient of reactivity in a graphite-moderated molten salt reactor. Nucl. Sci. Tech. 30(11), 166 (2019). https://doi.org/10.1007/s41365-019-0694-z

    Article  Google Scholar 

  29. X.C. Zhao, D.Y. Cui, X.Z. Cai et al., Analysis of Th-U breeding capability for an accelerator-driven subcritical molten salt reactor. Nucl. Sci. Tech. 29, 121 (2018). https://doi.org/10.1007/s41365-018-0448-3

    Article  Google Scholar 

  30. L.Y. He, S.P. Xia, R. Yan et al., Th-U and U-Pu cycling performances of molten chloride salt fast reactor under LEU start-up mode. Nucl. Tech. 43(1), 010604 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.010604(in Chinese)

    Article  Google Scholar 

  31. G.C. Li, P. Cong, C.G. Yu et al., Optimization of Th-U fuel breeding based on a single-fluid double-zone thorium molten salt reactor. Prog. Nucl. Energy 108, 144–151 (2018). https://doi.org/10.1016/j.pnucene.2018.04.017

    Article  Google Scholar 

  32. X.X. Li, Y.W. Ma, C.G. Yu et al., Effects of fuel salt composition on fuel salt temperature coefficient (FSTC) for an under-moderated molten salt reactor (MSR). Nucl. Sci. Tech. 29(8), 110 (2018). https://doi.org/10.1007/s41365-018-0458-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Wen Ma or Jin-Gen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project (No. XDA02010000), the National Natural Science Foundation of China (No. 11905285), the Frontier Science Key Program of the Chinese Academy of Sciences (No. QYZDY-SSW-JSC016), and the National Natural Science Foundation of China (No. 11790321).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YP., Ma, YW., Wu, JH. et al. Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor. NUCL SCI TECH 31, 108 (2020). https://doi.org/10.1007/s41365-020-00823-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00823-5

Keywords

Navigation