Skip to main content
Log in

In vivo SPECT imaging of an 131I-labeled PM 2.5 mimic substitute

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The health effects of ambient PM 2.5 and its potential mechanisms have generated considerable interest. In vitro cell studies and ex vivo animal experiments may not accurately determine the characteristics of PM 2.5 particles. To better understand their detailed mechanisms, we performed an in vivo study using single photon emission tomography (SPECT) imaging. To mimic the PM 2.5 particles, SiO2 nanoparticles modified by ethylene carbonate or polyvinyl pyrrolidone were labeled with 131I. After administration via inhalation, in vivo SPECT imaging of the radiolabeled particles in sprague dawley rats was performed. It was found that radioactivity accumulated in the lungs and trachea 6 and 24 h after administration. In addition, significant radioactivity was observed in the abdomen, including the liver and kidneys. The results were also confirmed by ex vivo autoradiography. This study revealed that in vivo SPECT imaging could be an effective method for investigating the properties of PM 2.5 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.H. Yang, Y. Wang, Y.X. Zeng et al., Rapid health transition in China, 1990–2010: findings from the global burden of disease study 2010. Lancet (London, England) 381(9882), 1987–2015 (2013). https://doi.org/10.1016/S0140-6736(13)61097-1

    Article  Google Scholar 

  2. J. Lelieveld, J.S. Evans, M. Fanis et al., The contribution of outdoor air pollution sources to premature mortality on a global scale. Nat. 525(7569), 367–371 (2015). https://doi.org/10.1038/nature15371

    Article  Google Scholar 

  3. H.B. Guo, S.J. Huang, M.X. Chen et al., Air pollutants and asthma patient visits: Indication of source influence. Sci. Total Environ. 625, 355–362 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.298

    Article  Google Scholar 

  4. V.C. Pan, F. Kazemiparkouhi, J. Manjourides et al., Long-term PM 2.5 exposures and respiratory, cancer and cardiovascular mortality in american older adults. Am. J. Epidemiol. 186(8), 961–969 (2017)

    Article  Google Scholar 

  5. Q. Wang, J.N. Wang, M.Z. Zeng et al., A county-level estimate of PM 2.5 related chronic mortality risk in China based on multi-model exposure data. Environ. Int. 110, 105–112 (2017)

    Article  Google Scholar 

  6. E.H. Wilker, S.R. Preis, A.S. Beiser et al., Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke 46(5), 1161–1166 (2012). https://doi.org/10.1161/STROKEAHA.114.00834

    Article  Google Scholar 

  7. A. Zanobetti, J. Schwartz, The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ. Health Perspect. 117(6), 898–903 (2009). https://doi.org/10.1289/ehp.0800108

    Article  Google Scholar 

  8. M. Franklin, P. Koutrakis, J. Schwartz, The role of particle composition on the association between PM 2.5 and mortality. Epidemiol. 19(5), 680–689 (2002)

    Article  Google Scholar 

  9. K.A. Miller, D.S. Siscovick, L. Sheppard et al., Long-term exposure to air pollution and incidence of cardiovascular events in women. New Engl. J. Med. 356(5), 447–458 (2007). https://doi.org/10.1016/j.envint.2017.10.015

    Article  Google Scholar 

  10. J. Lelieveld, J.S. Evans, M. Fnais et al., The contribution of outdoor air pollution sources to premature mortality on a global scale. Nat. 525(7569), 367–371 (2015). https://doi.org/10.1056/NEJMoa054409

    Article  Google Scholar 

  11. W. Liu, M. Zhang, J. Feng et al., The influence of quercetin on maternal immunity, oxidative stress, and inflammation in mice with exposure of fine particulate matter during gestation. Int. J. Environ. Res. Public Health 14(6), 592–607 (2017). https://doi.org/10.3390/ijerph14060592

    Article  Google Scholar 

  12. O.G. Aztatzi-Aguilar, M. Uribe-Ramírez, J. Narváez-Zorales et al., Early kidney damage induced by subchronic exposure to PM 2.5 in rats. Part. Fibre Toxicol. 13(1), 68–87 (2016)

    Article  Google Scholar 

  13. Y. Wei, X.N. Cao, X.L. Tang et al., Urban fine particulate matter (PM 2.5) exposure destroys blood-testis barrier (BTB) integrity through excessive ROS-mediated autophagy. Toxicol. Mech. Methods 28(4), 302–339 (2018)

    Article  Google Scholar 

  14. W. Zhou, D.D. Tian, H. Jun et al., Repeated PM 2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget 7(15), 20691–20703 (2016)

    Article  Google Scholar 

  15. B. Crobeddu, L. Aragao-Santiago, L.C. Bui et al., Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 230, 125–135 (2017)

    Article  Google Scholar 

  16. S.L. Feng, D. Gao, F. Liao et al., The health effects of ambient PM 2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 128, 67–74 (2016)

    Article  Google Scholar 

  17. M. Plusquin, F. Guida, S. Polidoro et al., DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environ. Int. 108, 127–136 (2017). https://doi.org/10.1016/j.envint.2017.08.006

    Article  Google Scholar 

  18. R.J. Chen, X. Meng, A. Zhao et al., DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ. Int. 94, 614–619 (2016). https://doi.org/10.1016/j.envint.2016.06.026

    Article  Google Scholar 

  19. B. Leclercq, A. Platel, S. Antherieu et al., Genetic and epigenetic alterations in normal and sensitive COPD diseased human bronchial epithelial cells repeatedly exposed to air pollution derived PM 2.5. Environ. Pollut. 230, 163–177 (2017)

    Article  Google Scholar 

  20. C.V. Breton, J. Yao, J. Millstein et al., Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and alu methylation and childhood blood pressure and carotid intima-media thickness in the Children’s Health Study. Environ. Health Perspect. 124(12), 1905–1912 (2016). https://doi.org/10.1289/EHP181

    Article  Google Scholar 

  21. B.F. Cachon, S. Firmin, A. Verdin et al., Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM 2.5 and PM >2.5) collected from Cotonou, Benin. Environ. Pollut. 185, 340–351 (2014)

    Article  Google Scholar 

  22. C.W. Liu, T.L. Lee, Y.C. Chen et al., PM 25 induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-kappaB-dependent pathway. Part Fibre Toxicol. 15(1), 4–19 (2018)

    Article  Google Scholar 

  23. T. Ku, B. Li, R. Gao et al., NF-kappaB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM 2.5 aspiration. Part Fibre Toxicol. 14(1), 34–52 (2017)

    Article  Google Scholar 

  24. B. Carney, S. Kossatz, T. Reiner, Molecular imaging of PARP. J. Nucl. Med. 58(7), 1025–1030 (2017). https://doi.org/10.2967/jnumed.117.189936

    Article  Google Scholar 

  25. K.H. Jung, K.H. Lee, Molecular imaging in the era of personalized medicine. J. Pathol. Transl. Med. 49(1), 43–58 (2013). https://doi.org/10.4132/jptm.2014.10.24

    Article  Google Scholar 

  26. B.S. Jang, MicroSPECT and MicroPET imaging of small animals for drug development. Toxicol. Res. 29(1), 1–6 (2013). https://doi.org/10.5487/TR.2013.29.1.001

    Article  Google Scholar 

  27. D.R. Osborne, C. Kuntner, S. Berr et al., Guidance for efficient small animal imaging quality control. Mol. Imaging Biol. 19(4), 485–498 (2017). https://doi.org/10.1007/s11307-016-1012-3

    Article  Google Scholar 

  28. M. D’Huyvetter, J. De Vos, C. Xavier et al., 131I-labeled Anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin. Cancer Res. An Official J. Am. Assoc. Cancer Res. 23(21), 6616–6628 (2017). https://doi.org/10.1158/1078-0432.CCR-17-0310

    Article  Google Scholar 

  29. J. Sheng, X.Y. Wang, J. Yan et al., Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. J. Mater. Chem. B 6(48), 8163–8169 (2018). https://doi.org/10.1039/c8tb02817f

    Article  Google Scholar 

  30. G.Y. Song, Z.J. Li, K.H. Li et al., SiO2/ZnO composite hollow sub-micron fibers: fabrication from facile single capillary electrospinning and their photoluminescence properties. Nanomater. 7(3), 53–62 (2017). https://doi.org/10.3390/nano7030053

    Article  Google Scholar 

  31. C.S. Thompson, M. Zou, Nanostructured PVP/SiO2 antireflective coating for solar panel applications. Nanotechnol. IEEE (2013). https://doi.org/10.1109/NANO.2013.6721058

    Article  Google Scholar 

  32. G. Hatch, R. Slade, E. Boykin et al., Correlation of effects of inhaled versus intratracheally injected metals on susceptibility to respiratory infection in mice. Am. Rev. Respir. Dis. 124, 167–173 (1981). https://doi.org/10.1164/arrd.1981.124.2.167

    Article  Google Scholar 

  33. Y.K. Dewaraja, M. Ljungberg, A.J. Green et al., MIRD pamphlet No. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J. Nucl. Med. 54(12), 2182–2188 (2013)

    Article  Google Scholar 

  34. J.G. Miller, J.S. Gillette, E.M. Manczak et al., Fine particle air pollution and physiological reactivity to social stress in adolescence: the moderating role of anxiety and depression. Psychosom. Med. 81(7), 641–648 (2019). https://doi.org/10.1097/PSY.0000000000000714

    Article  Google Scholar 

  35. P.L. Ljungman, M.A. Mittleman, Ambient Air Pollution and Stroke. Stroke 45(12), 3734–3741 (2014). https://doi.org/10.1161/STROKEAHA.114.003130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ping Xu or Ming-Qing Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 31671035, 51803082), National Significant New Drugs Creation Program (No. 2017ZX09304021), Jiangsu Province Foundation (Nos. BK20170204, BK20161137), and Jiangsu Provincial Medical Innovation Team (Nos. CXTDA2017024, LGY2017088, QNRC2016628).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, DH., Sheng, J., Wang, XY. et al. In vivo SPECT imaging of an 131I-labeled PM 2.5 mimic substitute. NUCL SCI TECH 31, 111 (2020). https://doi.org/10.1007/s41365-020-00818-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00818-2

Keywords

Navigation