Yield ratio of neutrons to protons in \(^{12}\)C(d,n)\(^{13}\)N and \(^{12}\)C(d,p)\(^{13}\)C from 0.6 to 3 MeV

Abstract

The neutron yield in the \(^{12}\)C(d,n)\(^{13}\)N reaction and the proton yield in the \(^{12}\)C(d,p)\(^{13}\)C reaction have been measured using deuteron beams of energies 0.6–3 MeV. The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target. The neutrons are detected at \(0^\circ\), \(24^\circ\), and \(48^\circ\) and the protons at \(135^\circ\) in the laboratory frame. Further, the ratio of the neutron yield to the proton yield was calculated. This can be used to effectively recognize the resonances. The resonances are found at 1.4 MeV, 1.7 MeV, and 2.5 MeV in the \(^{12}\)C(d,p)\(^{13}\)C reaction, and at 1.6 MeV and 2.7 MeV in the \(^{12}\)C(d,n)\(^{13}\)N reaction. The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J.L. Vogl, Radiative Capture of Protons by \(^{12}\)C and \(^{13}\)C below 700 keV (California Institute of Technology, Pasadena, 1963)

  2. 2.

    R.E. Brown, Experimental study of the \(^{17}\)O(p,\(\gamma\))\(^{14}\)N reaction and a calculation of the rate of this reaction in the CNO cycle in stars. Phys. Rev. 125, 347 (1962). https://doi.org/10.1103/PhysRev.125.347

    Article  Google Scholar 

  3. 3.

    S. Typel, G. Baur, Theory of the Trojan–Horse method. Ann. Phys. 305, 228 (2003). https://doi.org/10.1016/S0003-4916(03)00060-5

    Article  MATH  Google Scholar 

  4. 4.

    R.J. Jaszczak, R.L. Macklin, J.H. Gibbons, \(^{12}\)C(d, n)\(^{13}\)N total cross section from 1.2 to 4.5 MeV. Phys. Rev. 181, 1428 (1969). https://doi.org/10.1103/PhysRev.181.1428

    Article  Google Scholar 

  5. 5.

    F. Papillon, P. Walter, Analytical use of the multiple gamma-rays from the \(^{12}\)C(d, p)\(^{13}\)C nuclear reaction. Nucl. Instrum. Methods B 132, 468 (1997). https://doi.org/10.1016/S0168-583X(97)00438-2

    Article  Google Scholar 

  6. 6.

    X.D. Tang, S.B. Ma, F. Xiao et al., An efficient method for mapping the \(^{12}\)C+\(^{12}\)C molecular resonances at low energies. Nucl. Sci. Tech. 30, 126 (2019). https://doi.org/10.1007/s41365-019-0652-9

    Article  Google Scholar 

  7. 7.

    M. Peng, G.Z. He, Q.W. Zhang et al., Study of neutron production and moderation for sulfur neutron capture therapy. Nucl. Sci. Tech. 30, 2 (2019). https://doi.org/10.1007/s41365-018-0529-3

    Article  Google Scholar 

  8. 8.

    A. Curtis, C. Calvi, J. Tinsley et al., Micro-scale fusion in dense relativistic nanowire array plasmas. Nat. Commun. 9, 1077 (2018). https://doi.org/10.1038/s41467-018-03445-z

    Article  Google Scholar 

  9. 9.

    G. Zhang, M. Huang, A. Bonasera et al., Nuclear probes of an out-of-equilibrium plasma at the highest compression. Phys. Lett. A 383, 2285 (2019). https://doi.org/10.1016/j.physleta.2019.04.048

    Article  Google Scholar 

  10. 10.

    J.Y. Li, R.J. Wang, Y. Zhang et al., Calculation on the associated particle method for \({90}^\circ\) to measure the neutron yield correction factors of D-D neutron generator. Nucl. Tech. 40, 010202 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.010201. (in Chinese)

    Article  Google Scholar 

  11. 11.

    Y.G. Liu, M. Liu, J.L. Ke et al., Heat-flow-solid coupled analyses of the deuterium-target for compact D–D neutron generator. Nucl. Tech. 40, 010202 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.010202. (in Chinese)

    Article  Google Scholar 

  12. 12.

    H.J. He, X.H. Xu, Y.K. Lu et al., Study of deposition behavior of deuterium in palladium using D–D nuclear reaction. Nucl. Tech. 40, 020201 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.020201. (in Chinese)

    Article  Google Scholar 

  13. 13.

    T.W. Bonner, J.T. Eisinger, A.A. Kraus et al., Cross section and angular distributions of the (d,p) and (d,n) reactions in \(^{12}\)C from 1.8 to 6.1 MeV. Phys. Rev. 101, 209 (1956). https://doi.org/10.1103/PhysRev.101.209

    Article  Google Scholar 

  14. 14.

    R.W. Michelnn, D. Meyer, K. Bethce et al., Excitation functions for the reactions \(^{10}\)B(d,n)\(^{11}\)C and \(^{12}\)C(d,n)\(^{13}\)N for charged particle activation analysis. Nucl. Instrum. Methods Phys. Res. Sect. B (Beam Interact. Mater. At.) 51, 1 (1990). https://doi.org/10.1016/0168-583x(90)90530-8

    Article  Google Scholar 

  15. 15.

    C.R. Brune, R.W. Kavanagh, Total cross sections and thermonuclear reaction rates for \(^{13}\)C ( d, n) and \(^{14}\)C(d, n). Phys. Rev. C 45, 1382 (1992). https://doi.org/10.1103/PhysRevC.45.1382

    Article  Google Scholar 

  16. 16.

    https://tendl.web.psi.ch/tendl_2017/deuteron_html/C/DeuteronC12xs.html

  17. 17.

    M.L. Firouzbakht, D.J. Schlyer, A.P. Wolf et al., Cross-section measurements for the \(^{13}\)C(p,n)\(^{13}\)N and \(^{12}\)C(d,n)\(^{13}\)N nuclear reactions. Radiochim. Acta 55, 1 (1991). https://doi.org/10.1524/ract.1991.55.1.1

    Article  Google Scholar 

  18. 18.

    L. Csedreki, I. Uzonyi, G. Szki et al., Measurements and assessment of \(^{12}\)C(d, p\(\gamma\))\(^{13}\)C reaction cross sections in the deuteron energy range 740–2000 keV for analytical applications. Nucl. Instrum. Methods Phys. Res., Sect. B 328, 59 (2014). https://doi.org/10.1016/j.nimb.2014.02.123

    Article  Google Scholar 

  19. 19.

    M. Mayer, Simnra user’s guide, report ipp 9/113. Max-Planck-Institut fur Plasmaphysik, Garching, Germany 1(9), 9 (1997). https://doi.org/10.1063/1.59188

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhou-Tong He from Shanghai Institute of Applied Physics, Chinese Academy of Sciences, for the target preparation in this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Zhang.

Additional information

This work was partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB16 and XDPB09), the National Natural Science Foundation of China (Nos. 11890714 and 11421505), and the Key Research Program of Frontier Sciences of the CAS (No. QYZDJ-SSW-SLH002).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, WJ., Ma, YG., Zhang, GQ. et al. Yield ratio of neutrons to protons in \(^{12}\)C(d,n)\(^{13}\)N and \(^{12}\)C(d,p)\(^{13}\)C from 0.6 to 3 MeV. NUCL SCI TECH 30, 180 (2019). https://doi.org/10.1007/s41365-019-0705-0

Download citation

Keywords

  • Proton neutron ratio
  • \(^{12}\)C(d,n)
  • \(^{12}\)C(d,p)
  • Trojan horse method (THM)