Yield ratio of neutrons to protons in \(^{12}\)C(d,n)\(^{13}\)N and \(^{12}\)C(d,p)\(^{13}\)C from 0.6 to 3 MeV
- 22 Downloads
Abstract
The neutron yield in the \(^{12}\)C(d,n)\(^{13}\)N reaction and the proton yield in the \(^{12}\)C(d,p)\(^{13}\)C reaction have been measured using deuteron beams of energies 0.6–3 MeV. The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target. The neutrons are detected at \(0^\circ\), \(24^\circ\), and \(48^\circ\) and the protons at \(135^\circ\) in the laboratory frame. Further, the ratio of the neutron yield to the proton yield was calculated. This can be used to effectively recognize the resonances. The resonances are found at 1.4 MeV, 1.7 MeV, and 2.5 MeV in the \(^{12}\)C(d,p)\(^{13}\)C reaction, and at 1.6 MeV and 2.7 MeV in the \(^{12}\)C(d,n)\(^{13}\)N reaction. The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.
Keywords
Proton neutron ratio \(^{12}\)C(d,n) \(^{12}\)C(d,p) Trojan horse method (THM)Notes
Acknowledgements
We thank Dr. Zhou-Tong He from Shanghai Institute of Applied Physics, Chinese Academy of Sciences, for the target preparation in this work.
References
- 1.J.L. Vogl, Radiative Capture of Protons by \(^{12}\)C and \(^{13}\)C below 700 keV (California Institute of Technology, Pasadena, 1963)Google Scholar
- 2.R.E. Brown, Experimental study of the \(^{17}\)O(p,\(\gamma\))\(^{14}\)N reaction and a calculation of the rate of this reaction in the CNO cycle in stars. Phys. Rev. 125, 347 (1962). https://doi.org/10.1103/PhysRev.125.347 CrossRefGoogle Scholar
- 3.S. Typel, G. Baur, Theory of the Trojan–Horse method. Ann. Phys. 305, 228 (2003). https://doi.org/10.1016/S0003-4916(03)00060-5 CrossRefzbMATHGoogle Scholar
- 4.R.J. Jaszczak, R.L. Macklin, J.H. Gibbons, \(^{12}\)C(d, n)\(^{13}\)N total cross section from 1.2 to 4.5 MeV. Phys. Rev. 181, 1428 (1969). https://doi.org/10.1103/PhysRev.181.1428 CrossRefGoogle Scholar
- 5.F. Papillon, P. Walter, Analytical use of the multiple gamma-rays from the \(^{12}\)C(d, p)\(^{13}\)C nuclear reaction. Nucl. Instrum. Methods B 132, 468 (1997). https://doi.org/10.1016/S0168-583X(97)00438-2 CrossRefGoogle Scholar
- 6.X.D. Tang, S.B. Ma, F. Xiao et al., An efficient method for mapping the \(^{12}\)C+\(^{12}\)C molecular resonances at low energies. Nucl. Sci. Tech. 30, 126 (2019). https://doi.org/10.1007/s41365-019-0652-9 CrossRefGoogle Scholar
- 7.M. Peng, G.Z. He, Q.W. Zhang et al., Study of neutron production and moderation for sulfur neutron capture therapy. Nucl. Sci. Tech. 30, 2 (2019). https://doi.org/10.1007/s41365-018-0529-3 CrossRefGoogle Scholar
- 8.A. Curtis, C. Calvi, J. Tinsley et al., Micro-scale fusion in dense relativistic nanowire array plasmas. Nat. Commun. 9, 1077 (2018). https://doi.org/10.1038/s41467-018-03445-z CrossRefGoogle Scholar
- 9.G. Zhang, M. Huang, A. Bonasera et al., Nuclear probes of an out-of-equilibrium plasma at the highest compression. Phys. Lett. A 383, 2285 (2019). https://doi.org/10.1016/j.physleta.2019.04.048 CrossRefGoogle Scholar
- 10.J.Y. Li, R.J. Wang, Y. Zhang et al., Calculation on the associated particle method for \({90}^\circ\) to measure the neutron yield correction factors of D-D neutron generator. Nucl. Tech. 40, 010202 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.010201. (in Chinese) CrossRefGoogle Scholar
- 11.Y.G. Liu, M. Liu, J.L. Ke et al., Heat-flow-solid coupled analyses of the deuterium-target for compact D–D neutron generator. Nucl. Tech. 40, 010202 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.010202. (in Chinese) CrossRefGoogle Scholar
- 12.H.J. He, X.H. Xu, Y.K. Lu et al., Study of deposition behavior of deuterium in palladium using D–D nuclear reaction. Nucl. Tech. 40, 020201 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.020201. (in Chinese) CrossRefGoogle Scholar
- 13.T.W. Bonner, J.T. Eisinger, A.A. Kraus et al., Cross section and angular distributions of the (d,p) and (d,n) reactions in \(^{12}\)C from 1.8 to 6.1 MeV. Phys. Rev. 101, 209 (1956). https://doi.org/10.1103/PhysRev.101.209 CrossRefGoogle Scholar
- 14.R.W. Michelnn, D. Meyer, K. Bethce et al., Excitation functions for the reactions \(^{10}\)B(d,n)\(^{11}\)C and \(^{12}\)C(d,n)\(^{13}\)N for charged particle activation analysis. Nucl. Instrum. Methods Phys. Res. Sect. B (Beam Interact. Mater. At.) 51, 1 (1990). https://doi.org/10.1016/0168-583x(90)90530-8 CrossRefGoogle Scholar
- 15.C.R. Brune, R.W. Kavanagh, Total cross sections and thermonuclear reaction rates for \(^{13}\)C ( d, n) and \(^{14}\)C(d, n). Phys. Rev. C 45, 1382 (1992). https://doi.org/10.1103/PhysRevC.45.1382 CrossRefGoogle Scholar
- 16.
- 17.M.L. Firouzbakht, D.J. Schlyer, A.P. Wolf et al., Cross-section measurements for the \(^{13}\)C(p,n)\(^{13}\)N and \(^{12}\)C(d,n)\(^{13}\)N nuclear reactions. Radiochim. Acta 55, 1 (1991). https://doi.org/10.1524/ract.1991.55.1.1 CrossRefGoogle Scholar
- 18.L. Csedreki, I. Uzonyi, G. Szki et al., Measurements and assessment of \(^{12}\)C(d, p\(\gamma\))\(^{13}\)C reaction cross sections in the deuteron energy range 740–2000 keV for analytical applications. Nucl. Instrum. Methods Phys. Res., Sect. B 328, 59 (2014). https://doi.org/10.1016/j.nimb.2014.02.123 CrossRefGoogle Scholar
- 19.M. Mayer, Simnra user’s guide, report ipp 9/113. Max-Planck-Institut fur Plasmaphysik, Garching, Germany 1(9), 9 (1997). https://doi.org/10.1063/1.59188 CrossRefGoogle Scholar