Skip to main content
Log in

Cryogenic system design for HIAF iLinac

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A helium cryogenic system is designed by the Institute of Modern Physics, Chinese Academy of Sciences, to supply different cooling powers to the cryomodules of ion-Linac (iLinac) accelerator, which serves as the injector of the High Intensity Heavy-Ion Accelerator Facility project. The iLinac is a superconducting heavy-ion accelerator approximately 100 m long and contains 13 cryomodules cooled by superfluid helium. This article describes the cryogenic system design of the iLinac accelerator. The requirements of the cryogenic system, such as cooling mode, refrigeration temperature, operating pressure and pressure stability, are introduced and described in detail. In addition, heat loads from different sources are analyzed and calculated quantitatively. An equivalent cooling capacity of 10 kW at 4.5 K was determined for the cryogenic system according to the total heat load. Furthermore, a system process design was conducted and analyzed in detail. Further, the system layout and the main equipment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. HIAF design report. IMP internal report. 2017

  2. J.C. Yang, J.W. Xia, G.Q. Xiao et al., High intensity heavy ion accelerator facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res. 317(5), 263–265 (2013). https://doi.org/10.1016/j.nimb.2013.08.046

    Article  Google Scholar 

  3. X. Ma, W.Q. Wen, S.F. Zhang et al., HIAF: new opportunities for atomic physics with highly charged heavy ions. Nucl. Instrum. Methods Phys. Res. B. 408, 169–173 (2017). https://doi.org/10.1016/j.nimb.2017.03.129

    Article  Google Scholar 

  4. P. Li, Y.J. Yuan, J.C. Yang et al., The collimation system design for the Booster Ring in the HIAF project. Nucl. Instrum. Methods Phys. Res. A. 920, 14–21 (2018). https://doi.org/10.1016/j.nima.2018.12.064

    Article  Google Scholar 

  5. X.H. Zhou, Physics opportunities at the new facility HIAF. Nucl. Phys. Rev. 35(04), 339–349 (2018). https://doi.org/10.11804/NuclPhysRev.35.04.339

    Article  Google Scholar 

  6. P. Li, L. Bozyk, Z.Q. Dong et al., Dynamic vacuum simulation for the Booster Ring in the high-intensity heavy ion accelerator facility. Vacuum 163, 15–25 (2019). https://doi.org/10.1016/j.vacuum.2019.02.004

    Article  Google Scholar 

  7. G.Q. Xiao, H.S. Xu, S.C. Wang, CiADS and HIAF linac national research facilities: progress and prospect. Nucl. Phys. Rev. 34, 275–283 (2017). https://doi.org/10.11804/NuclPhysRev.34.03.275. (in Chinese)

    Article  Google Scholar 

  8. C. Li, L. Sun, Y. He et al., Conceptual design of LEBT and RFQ for the HIAF linac. Nucl. Instrum. Methods Phys. Res., Sect. A 729, 426–433 (2013). https://doi.org/10.1016/j.nima.2013.06.019

    Article  Google Scholar 

  9. J.G. Weisend II, ESS accelerator cryogenic plant. HVAC&R Res. 20(3), 296–301 (2014)

    Article  Google Scholar 

  10. X.L. Wang, P. Arnold, W. Hees et al., ESS accelerator cryoplant process design. IOP Conf. Ser.: Mater. Sci. Eng. 101(1), 012012 (2015). https://doi.org/10.1088/1757-899X/101/1/012012

    Article  Google Scholar 

  11. L. Pei, J. Theilacker, A. Klebaner et al., The fermilab CMTF cryogenic distribution remote control system. AIP Conf. Proc. 1573, 1713–1719 (2014). https://doi.org/10.1063/1.4860914

    Article  Google Scholar 

  12. Z.Y. Jiang, X.F. Niu, P. Zhang, Cryomodule control system of injector II for accelerator driven sub-critical system. Atom. Energy Sci. Technol. 50(7), 1314–1319 (2016). https://doi.org/10.7538/yzk.2016.50.07.1314. (in Chinese)

    Article  Google Scholar 

  13. D. Gonnella, R. Eichhorn, F. Furuta et al., Nitrogen-doped 9-cell cavity performance in a test cryomodule for LCLS-II. J. Appl. Phys. 117(2), 935–937 (2014). https://doi.org/10.1063/1.4905681

    Article  Google Scholar 

  14. E.F. Daly, V. Gianni, C.H. Rodeet al., SNS cryomodule heat load and thermal design. Office of Scientific and Technical information technical reports. 2001 https://digital.library.unt.edu/ark:/67531/metadc741462/m2/1/high_res_d/791556.pdf

  15. J.G. Weisend II, D. Arenius, B. Bull et al., Conceptual design of the FRIB cryogenic system. AIP Conf. Proc. 1434, 94–101 (2012). https://doi.org/10.1063/1.4706909

    Article  Google Scholar 

  16. Z. Li, F. Tian, Z.Z. Wang et al., The design and research of helium recovery device. Cryog. Superconduct. 42, 1–5 (2014). https://doi.org/10.16711/j.1001-7100.2014.05.006. (in Chinese)

    Article  Google Scholar 

  17. J. Fydrych, P. Arnold, W. Hees et al., Cryogenic distribution system for the ESS superconducting proton linac. Phys. Procedia. 67(4), 828–833 (2015). https://doi.org/10.1016/j.phpro.2015.06.139

    Article  Google Scholar 

  18. R.K. Sharma, P.K. Gupta, P.K. Kush, Design and development of 2 Kelvin J–T heat exchanger. National Symposium on Cryogenics and Superconductivity. 2017 https://www.researchgate.net/publication/314093331

  19. R.J. Klimas, P. Mcintyre, J. Colvin et al., Large volume liquid helium relief device verification apparatus for the alpha magnetic spectrometer. AIP Conf. Proc. 1434, 309–316 (2012). https://doi.org/10.1063/1.4706934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Ming Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, XF., Bai, F., Wang, XJ. et al. Cryogenic system design for HIAF iLinac. NUCL SCI TECH 30, 178 (2019). https://doi.org/10.1007/s41365-019-0700-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0700-5

Keywords

Navigation