Influence of copper element distribution and speciation on the color of Chinese underglaze copper-red porcelain in the Yuan dynasty

  • Mao-Lin Zhang
  • Li-Hua WangEmail author
  • Li-Li Zhang
  • Hai-Sheng Yu


A shard of Chinese underglaze copper-red porcelain from the Yuan dynasty (AD 1271–1368) made in the Jingdezhen kiln was measured by synchrotron radiation-induced X-ray fluorescence mapping and X-ray absorption near-edge spectroscopy to investigate the influence of copper element distribution and speciation on the color of porcelain. In black-colored region, copper accumulates at the interface between the body and glaze layers with metallic copper particles as the main speciation. In contrast, Cu is irregularly distributed in the red-colored region with multi-valence speciation. The differences in Cu distribution and speciation in black- and red-colored regions indicate that they are the main factors influencing the different colors of copper-red underglaze porcelain.


Copper distribution and speciation Chinese underglaze copper-red porcelain Synchrotron techniques 



We appreciate the BL15U1 beamline at Shanghai Synchrotron Radiation Facility for providing the beamtime to carry out the μ-XRF and μ-XANES experiments.

Supplementary material

41365_2019_630_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1574 kb)


  1. 1.
    J.Z. Li, History of Science and Technology of China (Ceramic Volume) (Science Press, Beijing, 1998)Google Scholar
  2. 2.
    J.W. Mellor, Chemistry of Chinese copper-red glazes. Trans. Ceram. Soc. 35(8), 364–378 (1936)Google Scholar
  3. 3.
    R.F. Huang, X.Q. Chen, S.P. Chen et al., Submicroscopic structure of copper red glaze in Ming and Qing dynasties. China Ceram. 03, 58–62 (1986)Google Scholar
  4. 4.
    P.A. Cuvelier, C. Andraud, D. Chaudanson et al., Copper red glazes: a coating with two families of particles. Appl. Phys. A Mater. 106(4), 915–929 (2012). CrossRefGoogle Scholar
  5. 5.
    W. Klysubun, Y. Thongkam, S. Pongkrapan et al., XAS study on copper red in ancient glass beads from Thailand. Anal. Bioanal. Chem. 399(9), 3033–3040 (2011). CrossRefGoogle Scholar
  6. 6.
    C. Maurizio, F. d’Acapito, M. Benfatto et al., Local coordination geometry around Cu+ and Cu2+ ions in silicate glasses: an X-ray absorption near edge structure investigation. Eur. Phys. J. B 14, 211–216 (2000). CrossRefGoogle Scholar
  7. 7.
    P. Colomban, A. Tournié, P. Ricciardi, Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. J. Raman Spectrosc. 40, 1949–1955 (2009). CrossRefGoogle Scholar
  8. 8.
    Ph Sciau, L. Noé, Ph Colomban, Metal nanoparticles in contemporary potters’ master pieces: lustre and red “pigeon blood” potteries as models to understand the ancient pottery. Ceram. Int. 42, 15349–15357 (2016). CrossRefGoogle Scholar
  9. 9.
    Ph Colomban, The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2009). CrossRefGoogle Scholar
  10. 10.
    W.D. Kingery, P.B. Vandiver, An Islamic Lusterware from Kashan, Ceramic Masterpieces (The Free Press, New York, 1986), pp. 111–121Google Scholar
  11. 11.
    A. Ram, S.N. Prasad, Mechanism of formation of color in copper red glass, in Advances in Glass Technology, Part I (Plenum Press, New York, 1962), pp. 256–269Google Scholar
  12. 12.
    S. Banerjee, A. Paul, Thermodynamics of the system Cu–O and ruby formation in borate glass. J. Am. Ceram. Soc. 57, 286–290 (1974). CrossRefGoogle Scholar
  13. 13.
    M. Wakamatsu, N. Takeuchi, S. Ishida, Effect of heating and cooling atmosphere on colors of glaze and glass containing copper. J. Non Cryst. Solids 80, 412–421 (1986). CrossRefGoogle Scholar
  14. 14.
    M. Wakamatsu, N. Takeuchi, H. Nagai et al., Chemical states of copper and tin in copper glazes fired under various atmosphere. J. Am. Ceram. Soc. 72, 16–19 (1989). CrossRefGoogle Scholar
  15. 15.
    L. Guan, J. Zhu, C.S. Fan, Y.M. Yang et al., Micro SR-XRF analysis on underglaze copper red porcelain of Ming dynasty. Nucl. Tech. 36(7), 070103 (2013). (in Chinese) Google Scholar
  16. 16.
    J. Zhu, H.P. Duan, Y.M. Yang et al., Colouration mechanism of underglaze copper-red decoration porcelain (AD 13th–14th century), China. J. Synchrotron Radiat. 21, 751–755 (2014). CrossRefGoogle Scholar
  17. 17.
    C. Lu, J.X. Jiang, C.Q. Xu et al., Coloration mechanism of Xuande sacrificial red porcelain from Guan kiln of Jingdezhen in China. J. Univ. Chin. Acad. Sci. 33(3), 421–426 (2016). CrossRefGoogle Scholar
  18. 18.
    M.C.C. Pinzani, A. Somogyi, A.S. Simionovici et al., Direct determination of cadmium speciation in municipal solid waste fly ashes by synchrotron radiation induced μ-X-ray fluorescence and μ-X-ray absorption spectroscopy. Environ. Sci. Technol. 36, 3165 (2002). CrossRefGoogle Scholar
  19. 19.
    L. Vincze, A. Somogyi, J. Osán et al., Quantitative trace element analysis of individual fly ash particles by means of X-ray micro-fluorescence. Anal. Chem. 74, 1128 (2002). CrossRefGoogle Scholar
  20. 20.
    M.C. Camerani, A. Somogyi, B. Vekemans et al., Determination of the Cd-bearing phases in municipal solid waste and biomass single fly ash particles using SR-μXRF spectroscopy. Anal. Chem. 79, 6496 (2007). CrossRefGoogle Scholar
  21. 21.
    L.H. Wang, X.M. Lu, Y.Y. Huang, Determination of Zn distribution and speciation in basic oxygen furnace sludge by synchrotron radiation induced μ-XRF and μ-XANES microspectroscopy. X Ray Spectrom. 42, 423–428 (2013). CrossRefGoogle Scholar
  22. 22.
    M. Zi, X. Wei, H. Yu et al., Stratified structure in ancient paints studied by synchrotron confocal micro-X-ray method. Nucl. Tech. 38, 060101 (2015). (in Chinese) CrossRefGoogle Scholar
  23. 23.
    M. Shang, T. Zhao, H. Bao et al., In situ XAFS characterization of bimetallic nanoparticle catalysts PtCo/C structure changes in the working conditions. Nucl. Tech. 39, 060101 (2016). (in Chinese) CrossRefGoogle Scholar
  24. 24.
    G.L. Chang, D.G. Wang, Y.Y. Zhang et al., ALD-coated ultrathin Al2O3 film on BiVO4 nanoparticles for efficient PEC water splitting. Nucl. Sci. Tech. 27, 108 (2016). CrossRefGoogle Scholar
  25. 25.
    Y.Y. Yang, Q. Sao, S.-Q. Gu et al., Soller slits automatic focusing method for multi-element fluorescence detector. Nucl. Sci. Tech. 27(5), 115 (2016). CrossRefGoogle Scholar
  26. 26.
    P.Q. Duan, H.L. Bao, J. Li et al., In-situ high-energy-resolution X-ray absorption spectroscopy for UO2 oxidation at SSRF. Nucl. Sci. Tech. 28, 2 (2017). CrossRefGoogle Scholar
  27. 27.
    X.P. Sun, F.F. Sun, S.Q. Gu et al., Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in situ quick X-ray absorption spectroscopy. Nucl. Sci. Tech. 28, 21 (2017). CrossRefGoogle Scholar
  28. 28.
    L.L. Zhang, S. Yan, S. Jiang et al., Hard X-ray micro-focusing beamline at SSRF. Nucl. Sci. Tech. 26(6), 060101 (2015). CrossRefGoogle Scholar
  29. 29.
    Demeter: XAS Data Processing and Analysis. Accessed 24 Apr 2019
  30. 30.
    A.N. Shugar, Byzantine opaque red glass tesserae from Beit Shean, Israel. Archaeometry 42(2), 375–384 (2000). CrossRefGoogle Scholar
  31. 31.
    A. Santagostino Barbone, E. Gliozzo, F. D’Acapito et al., The SECTILIA panels of Faragola (ASCOLI SATRIANO, SOUTHERN Italy): a multi-analytical study of the red, orange and yellow glass slabs. Archaeometry 50(3), 451–473 (2008). CrossRefGoogle Scholar
  32. 32.
    R.H. Brill, N.D. Cahill, A red opaque glass from Sardis and some thoughts on red opaques in general. J. Glass Stud. 30, 16–27 (1988)Google Scholar
  33. 33.
    F.K. Zhang, Study on Changsha ware. J. Chin. Ceram. Soc. 14(3), 339–348 (1986). (in Chinese) Google Scholar
  34. 34.
    S. Quartieri, R. Arletti, Chapter 4.3, in The use of X-Ray Absorption Spectroscopy in Historical Glass Research, Modern Methods for analyzing Archaeological and Historical Glass, 1st edn., ed. by K. Janssens (Wiley, Hoboken, 2013)Google Scholar
  35. 35.
    A. Silvestri, S. Tonietto, F. D’Acapito et al., The role of copper on colour palaeo-Christian glass mosaic tesserae: an XAS study. J. Cult. Herit. 13, 137–144 (2012). CrossRefGoogle Scholar
  36. 36.
    S. Padovani, C. Sada, P. Mazzoldi et al., Copper in glazes of Renaissance luster pottery: nanoparticles, ions, and local environment. J. Appl. Phys. 93(12), 10058–10063 (2003). CrossRefGoogle Scholar
  37. 37.
    G. Chen, S.Q. Chu, T.X. Sun et al., Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. J. Synchrotron Radiat. 24, 1000–1005 (2017). CrossRefGoogle Scholar
  38. 38.
    I. Nakai, C. Numako, H. Hosono et al., Origin of the red color of Satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy. J. Am. Ceram. Soc. 82(3), 689–695 (1999). CrossRefGoogle Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mao-Lin Zhang
    • 1
  • Li-Hua Wang
    • 2
    • 3
    Email author
  • Li-Li Zhang
    • 2
    • 3
  • Hai-Sheng Yu
    • 3
  1. 1.Institute of Ancient CeramicsJingdezhen Ceramic InstituteJingdezhenChina
  2. 2.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  3. 3.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations