Skip to main content
Log in

Transfer function measurement for the SSRF SRF system

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A digital transfer function measurement system has been embedded in the low-level radio frequency (LLRF) system of the storage ring of the Shanghai Synchrotron Radiation Facility. The measurement results indicate that the decreased control accuracy at high current is primarily owing to ripples from the high-voltage power supply, the transient beam loading effect, and the digital aliasing effect. The current LLRF algorithm is not able to suppress these disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.B. Tang, Z.Y. Ma, H.T. Hou et al., Frequency control and pre-tuning of a large aperture 500 MHz 5-cell superconducting RF cavity. Nucl. Sci. Tech. 25, 030102 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.030102

    Article  Google Scholar 

  2. Z.Y. Ma, J.F. Liu, H.T. Hou et al., Surface preparation processing for superconducting cavities. Nucl. Sci. Tech. 25, 060102 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.060102

    Article  Google Scholar 

  3. X. Zheng, Y.B. Zhao, H.T. Hou et al., DLLRF and beam trip analysis in the storage ring of SSRF. Paper Presented at the Proceedings of 1st International Particle Accelerator Conference, Kyoto, Japan, 23–28 May 2010

  4. D. Boussard, G. Lambert, Reduction of the apparent impedance of wide band accelerating cavities by RF feedback. IEEE Trans. Nucl. Sci. 30, 2239 (1983). https://doi.org/10.1109/TNS.1983.4332774

    Article  Google Scholar 

  5. D. Boussard, Control of cavities with high beam loading. IEEE Trans. Nucl. Sci. 32, 1852 (1985). https://doi.org/10.1109/TNS.1985.4333745

    Article  Google Scholar 

  6. M.G. Minty, R.H. Siemann, Heavy beam loading in storage ring radio frequency system. IEEE Trans. Nucl. Sci. 376, 301 (1996). https://doi.org/10.1016/0168-9002(96)00180-5

    Article  Google Scholar 

  7. P. Krejcik, P. Corredoura, M. Minty et al, RF feedback for beam loading compensation in the SLC Damping. Paper Presented at the Proceedings of the PAC93, 2370 (1993). https://doi.org/10.1109/pac.1993.309325

  8. Z.G. Zhang, Y.B. Zhao, K. Xu et al., Digital LLRF controller for SSRF booster RF system upgrade. Nucl. Sci. Tech. 26, 030106 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.030106

    Article  Google Scholar 

  9. Z.G. Zhang, Y.B. Zhao, K. Xu et al., Control of field flatness based on FPGA for multi-cell cavity. Nucl. Tech. 40, 020101 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.020101. (in Chinese)

    Article  Google Scholar 

  10. Z.G. Zhang, Y.B. Zhao, K. Xu et al., A calibration method and experiment research based on I/Q demodulation. Nucl. Tech. 38, 030102 (2015). https://doi.org/10.11889/j.0253-3219.2015.hjs.38.030102. (in Chinese)

    Article  Google Scholar 

  11. P.P. Gong, Y.B. Zhao, H.T. Hou et al., Front-end frequency conversion module design for harmonic RF system in SSRF. Nucl. Tech. 42, 010101 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.010101. (in Chinese)

    Article  Google Scholar 

  12. M.D. Li, Y.B. Zhao, X. Zheng et al., Design and implementation of frequency tracking and amplitude-phase feedback in RFQ low level control system. Nucl. Tech. 41, 060202 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.060202. (in Chinese)

    Article  Google Scholar 

  13. F. Pedersen, A novel RF cavity tuning feedback scheme for heavy beam loading. IEEE Trans. Nucl. Sci. 32, 2138 (1985). https://doi.org/10.1109/TNS.1985.4333841

    Article  Google Scholar 

  14. F. Pedersen, Beam loading effects in CERN PS booster. IEEE Trans. Nucl. Sci. 22, 1906 (1975). https://doi.org/10.1109/TNS.1975.4328024

    Article  Google Scholar 

  15. Z.K. Liu, C. Wang, L.H. Chang et al., Modeling the interaction of a heavily beam loaded SRF cavity with its low-level RF feedback loops. Nucl. Instrum. Methods Phys. Res. A 894, 57 (2018). https://doi.org/10.1016/j.nima.2018.03.046

    Article  Google Scholar 

  16. T. Mastorides, C. Rivetta, J.D. Fox et al., Analysis of longitudinal beam dynamics behavior and RF system operative limits at high-beam currents in storage rings. Phys. Rev. Spec. Top. Accel. Beams 11, 062802 (2008). https://doi.org/10.1103/physrevstab.11.062802

    Article  Google Scholar 

  17. Y.B. Zhao, C.K. Yin, T.X. Zhang et al., Digital prototype of LLRF system for SSRF. Chin. Phys. C 32, 758 (2008)

    Article  Google Scholar 

  18. F. Qiu, S. Michizono, T. Miura, Application of disturbance observer-based control in low-level radio-frequency system in a compact energy recovery linac at KEK. Phys. Rev. Accel. Beams 18, 092801 (2015). https://doi.org/10.1103/PhysRevSTAB.18.092801

    Article  Google Scholar 

  19. H. Hassanzadegan, R. Grino, A transient model for RF cavity analysis under beam loading. Nucl. Instrum. Methods Phys. Res. A 615, 143 (2010). https://doi.org/10.1016/j.nima.2010.01.070

    Article  Google Scholar 

  20. R. Huang, Y. He, Z.J. Wang, Analytical solution to the transient beam loading effects of a superconducting cavity. Chin. Phys. C 41, 107001 (2017). https://doi.org/10.1088/1674-1137/41/10/107001

    Article  Google Scholar 

  21. J.M. Byrd, S. De, J. Jacob et al., Transient beam loading effects in harmonic rf systems for light sources. Phys. Rev. Accel. Beams 5, 092001 (2002). https://doi.org/10.1103/PhysRevSTAB.5.092001

    Article  Google Scholar 

  22. S.L. Pei, S.H. Wang, Transient beam loading effects in standing wave cavities of linear accelerator. High Energy Phys. Nucl. Phys. 30, 454 (2006)

    Google Scholar 

  23. N. Yamamoto, T. Takahashi, S. Sakanaka, Reduction and compensation of the transient beam loading effects in a double RF system of synchrotron light sources. Phys. Rev. Accel. Beams 21, 012001 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.012001

    Article  Google Scholar 

  24. T. Mastorides, C. Rivetta, J.D. Fox et al., RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics. Phys. Rev. Accel. Beams 13, 201801 (2010). https://doi.org/10.1103/PhysRevSTAB.14.029901

    Article  Google Scholar 

  25. P.B. Wilson, Beam Loading in High-Energy Storage Rings, SLAC-PUB-1456 (1974)

  26. P.B. Wilson, High Energy Electron Linacs: Applications to Storage Ring RF Systems and Linear colliders, SLAC-PUB-2884 (1991)

  27. F. Pedersen, RF Cavity Feedback, CERN/PS 92-59 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Tang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, YY., Zhao, ZT., Zhao, YB. et al. Transfer function measurement for the SSRF SRF system. NUCL SCI TECH 30, 101 (2019). https://doi.org/10.1007/s41365-019-0612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0612-4

Keywords

Navigation