Skip to main content

A study on the excitation functions of 60,62Ni(α,n), 60,61Ni(α,2n), 58,64Ni(α,p), natNi(α,x) reactions

Abstract

The prediction of nuclear cross-section data is crucial, especially in the absence of experimental data or in the difficulty of these experimental data. Nickel (Ni) is an important material in fusion and fission reactor technologies, the production of radionuclides in nuclear medicine, and many other fields. In this study, the excitation functions for 60,62Ni(α,n), 60,61Ni(α,2n), 58,64Ni(α,p), and natNi(α,x) reactions have been investigated by using pre-equilibrium reaction models. The calculations of the excitation functions for the reactions are used with the geometry-dependent hybrid model in ALICE/ASH code and the two-component exciton model in TALYS 1.8 code. The obtained results are compared to each other, and the experimental data are taken from the EXFOR database.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. E. Yildiz, A. Aydin, Calculation of cross-sections and astrophysical S-factors for 62Ni(α,n) and 62Ni(α,γ) reactions of structural fusion material nickel. J. Fusion Energy 35, 605–607 (2016). https://doi.org/10.1007/s10894-016-0079-9

    Article  Google Scholar 

  2. F. Szelecsényi, Measurement of cross sections of proton induced nuclear reactions on Ti, Ni, Zn, Cd and Au up to 30 MeV and their applications in radioisotope (2009)

  3. E. Tel, A. Kara, Neutron, proton and alpha emission spectra of nickel isotopes for proton induced reactions. J. Fusion Energy 31, 257–261 (2012). https://doi.org/10.1007/s10894-011-9470-8

    Article  Google Scholar 

  4. E. Tel, Study on some structural fusion materials for (n, p) reactions up to 30 MeV energy. J. Fusion Energy 29, 332–336 (2010). https://doi.org/10.1007/s10894-010-9285-z

    Article  Google Scholar 

  5. E. Tel, C. Durgu, N.N. Akti, Ş. Okuducu, Calculations of excitation functions of some structural fusion materials for (n, t) Reactions up to 50 MeV energy. J. Fusion Energy 29, 290–294 (2010). https://doi.org/10.1007/s10894-010-9277-z

    Article  Google Scholar 

  6. E. Tel, S. Akca, M. Sahan et al., The comparison of (n, p), (n, α), (n,2n) and (α, n) reaction cross-sections for 7Li and 9Be target nuclei. J. Fusion Energy. 35(4), 709–714 (2016). https://doi.org/10.1007/s10894-016-0094-x

    Article  Google Scholar 

  7. B. Demir, H. Sarpün, A. Kaplan et al., Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50,52Cr. J. Fusion Energy 34, 808–816 (2015). https://doi.org/10.1007/s10894-015-9889-4

    Article  Google Scholar 

  8. H. Sarpün, A. Aydın, A. Kaplan et al., Double differential charged particle emission cross sections and stopping power calculations for structural fusion materials 58,60Ni. J. Fusion Energy 34, 1306–1313 (2015). https://doi.org/10.1007/s10894-015-9961-0

    Article  Google Scholar 

  9. A. Aydin, H. Pekdogan, A. Kaplan et al., Comparison of level density models for the 60,61,62,64Ni(p, n) reactions of structural fusion material nickel from threshold to 30 MeV. J. Fusion Energy 34, 1105–1108 (2015). https://doi.org/10.1007/s10894-015-9927-2

    Article  Google Scholar 

  10. B. Demir, A. Kaplan, V. Çapalı et al., Neutron production cross-section and Geant4 calculations of the structural fusion material 59Co for (α, xn) and (γ, xn) reactions. J. Fusion Energy 34, 636–641 (2015). https://doi.org/10.1007/s10894-015-9860-4

    Article  Google Scholar 

  11. A. Kaplan, V. ÇapalI, H. Özdoǧan et al., (3He, xn) reaction cross-section calculations for the structural fusion material 181Ta in the energy range of 14–75 MeV. J. Fusion Energy 33, 510–515 (2014). https://doi.org/10.1007/s10894-014-9705-6

    Article  Google Scholar 

  12. F.A. Uğur, E. Tel, A.A. Gökçe, A study on 19F(n, α) reaction cross section. J. Fusion Energy 32, 414–418 (2013). https://doi.org/10.1007/s10894-012-9587-4

    Article  Google Scholar 

  13. E. Tel, F.A. Ugur, A.A. Gokce, Alpha induced reaction cross section calculations of tantalum nucleus. J. Fusion Energy 32, 304–310 (2013). https://doi.org/10.1007/s10894-012-9550-4

    Article  Google Scholar 

  14. H. Aytekin, O. Artun, R. Baldık, Cross-section calculations of proton induced (p, n) and (p,2n) reactions for production of diagnostic 67Ga, 81Rb, 111In, 123,124I, 123Cs and 123Xe radioisotopes. J. Radioanal. Nucl. Chem. 298, 95–103 (2013). https://doi.org/10.1007/s10967-013-2478-y

    Article  Google Scholar 

  15. R. Baldık, H. Aytekin, E. Tel, Equilibrium and pre-equilibrium calculations of cross-sections of (p, xn) reactions on 89Y, 90Zr and 94Mo targets used for the production of 89Zr, 90Nb and 94Tc positron-emitting radionuclides. Pramana 80, 251–261 (2013). https://doi.org/10.1007/s12043-012-0472-5

    Article  Google Scholar 

  16. R. Baldık, H. Aytekin, O. Artun, Investigation of excitation functions for (n, 2n) reactions on some samarium, europium and gadolinium isotopes in the mass region 144 ≤ A ≤ 160. Mod. Phys. Lett. A 29, 1450074 (2014). https://doi.org/10.1142/S0217732314500746

    Article  Google Scholar 

  17. H. Aytekin, R. Baldik, Pre-equilibrium and equilibrium calculations of (n, p) reactions on 32S, 64Zn, 67Zn, 89Y, 90Zr and 153Eu targets used for production of 32P, 64Cu, 67Cu, 89Sr, 90Y and 153Sm therapeutic radionuclides. Ann. Nucl. Energy 53, 439–446 (2013). https://doi.org/10.1016/j.anucene.2012.09.028

    Article  Google Scholar 

  18. R. Baldik, A. Dombayci, Investigation of the production of 68Ga using pre-equilibrium models. Appl. Radiat. Isot. 113, 10–17 (2016). https://doi.org/10.1016/j.apradiso.2016.04.002

    Article  Google Scholar 

  19. O. Artun, H. Aytekin, Calculation of excitation functions of proton, alpha and deuteron induced reactions for production of medical radioisotopes 122–125I. Nucl. Instrum. Meth. B. 345, 1–8 (2015). https://doi.org/10.1016/j.nimb.2014.12.029

    Article  Google Scholar 

  20. A. Koning, S. Hilaire, S. Goriely, Talys-1.8 A Nuclear Reaction Program, (2015). http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf. Accessed 2017.

  21. A.J. Koning, M.C. Duijvestijn, A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl. Phys. A 744, 15–76 (2004). https://doi.org/10.1016/j.nuclphysa.2004.08.013

    Article  Google Scholar 

  22. M. Yiğit, E. Tel, H. Sarpün, Excitation function calculations for α + 93Nb nuclear reactions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 385, 59–64 (2016). https://doi.org/10.1016/j.nimb.2016.08.019

    Article  Google Scholar 

  23. A. Kara, T. Korkut, M. Yigit et al., Modelling study on production cross sections of 111In radioisotopes used in nuclear medicine. Kerntechnik 80, 270–274 (2015). https://doi.org/10.3139/124.110527

    Article  Google Scholar 

  24. M. Eslami, T. Kakavand, M. Mirzaii, Theoretical approach to study the light particles induced production routes of 22Na. Ann. Nucl. Energy 83, 14–24 (2015). https://doi.org/10.1016/j.anucene.2015.04.004

    Article  Google Scholar 

  25. I.H. Sarpün, A. Aydin, A. Kaplan et al., Comparison of fission barrier and level density models for (α, f) reaction of some heavy nuclei. Ann. Nucl. Energy 70, 175–179 (2014). https://doi.org/10.1016/j.anucene.2014.03.017

    Article  Google Scholar 

  26. M. Yiğit, A. Kara, Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66–68Zn targets. Nucl. Eng. Technol. 49, 996–1005 (2017). https://doi.org/10.1016/j.net.2017.03.006

    Article  Google Scholar 

  27. G. Audi, F.G. Kondev, M. Wang et al., NUBASE2012 evaluation of nuclear properties. Nucl. Data Sheets 36, 1157–1286 (2012). https://doi.org/10.1016/j.nds.2014.06.127

    Article  Google Scholar 

  28. S.J. Zinkle, N.M. Ghoniem, Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51–52, 55–71 (2000). https://doi.org/10.1016/S0920-3796(00)00320-3

    Article  Google Scholar 

  29. N. Amjed, F. Tarkanyi, A. Hermanne et al., Activation cross sections of proton induced reactions on natural Ni up to 65MeV. Appl. Radiat. Isot. 92, 73–84 (2014). https://doi.org/10.1016/j.apradiso.2014.06.008

    Article  Google Scholar 

  30. R.D. Neirinckx, Excitation function for the 60Ni(a,2n)62Zn reaction and production of 62Zn bleomycin. Int. J. Appl. Radiat. Isot. 28, 808–809 (1977). https://doi.org/10.1016/0020-708X(77)90121-1

    Article  Google Scholar 

  31. M. Broeders, C.H.M. Yu Konobeyev, A. Yu Korovin et al., ALICE/ASH pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies (Forschungszentrum Karlsruhe, Karlsruhe, 2006), pp. 1–230. https://publikationen.bibliothek.kit.edu/270064701

    Google Scholar 

  32. EXFOR, EXFOR/CSISRS (Experimental Nuclear Reaction Data File), EXFOR/CSISRS (Experimental Nucl. React. Data File). (2017)

  33. M. Blann, Hybrid model for pre-equilibrium decay in nuclear reactions. Phys. Rev. Lett. 27, 337–340 (1971)

    Article  Google Scholar 

  34. J.J. Griffin, Statistical model of intermediate structure. Phys. Rev. Lett. 17, 478 (1966). https://doi.org/10.1103/PhysRevLett.17.478

    Article  Google Scholar 

  35. B.J. Harp, G.D. Miller, J.M. Berne, Attainment of statistical equilibrium in excited nuclei. Phys. Rev. 165, 1166–1169 (1968). https://doi.org/10.1103/PhysRev.165.1166

    Article  Google Scholar 

  36. M. Blann, A. Mignerey, Pre-equilibrium decay at moderate excitations and the hybrid model. Nucl. Phys. A 186, 245–256 (1972). https://doi.org/10.1016/0375-9474(72)90043-7

    Article  Google Scholar 

  37. M. Blann, Preequilibrium decay. Annu. Rev. Nucl. Sci. 25, 123–166 (1975). https://doi.org/10.1146/annurev.ns.25.120175.001011

    Article  Google Scholar 

  38. M. Blann, H.K. Vonach, Global test of modified precompound decay models. Phys. Rev. C 28, 1475–1492 (1983). https://doi.org/10.1103/PhysRevC.28.1475

    Article  Google Scholar 

  39. C. Kalbach, Two-component exciton model: basic formalism away from shell closures. Phys. Rev. C 33, 818–833 (1986). https://doi.org/10.1103/PhysRevC.33.818

    Article  Google Scholar 

  40. H.A. Bethe, An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 50, 332–341 (1936). https://doi.org/10.1103/PhysRev.50.332

    Article  MATH  Google Scholar 

  41. H.A. Bethe, Nuclear physics B. nuclear dynamics, theoretical. Rev. Mod. Phys. 9, 69–244 (1937). https://doi.org/10.1103/RevModPhys.9.69

    Article  MATH  Google Scholar 

  42. E. Erba, U. Facchini, E. Saetta, Menichella, Statistical emission in nuclear reactions and nuclear level density (*). Il Nuovo Cimento 22, 1237–1260 (1961). https://doi.org/10.1007/BF02786895

    Article  Google Scholar 

  43. T.D. Newton, Shell effects on the spacing of nuclear levels. Can. J. Phys. 34, 804–829 (1956). https://doi.org/10.1139/p56-090

    Article  MATH  Google Scholar 

  44. A. Cameron, Nuclear level spacings. Can. J. Phys. 36, 1040–1057 (1958). https://doi.org/10.1139/p58-112

    Article  Google Scholar 

  45. M. Guttormsen, M. Hjorth-Jensen, E. Melby et al., Energy shifted level densities in rare earth region. Phys. Rev. C 61, 067302 (2000). https://doi.org/10.1103/PhysRevC.61.067302

    Article  Google Scholar 

  46. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Canadian J. Phys. 43(8), 1446–1496 (1965). https://doi.org/10.1139/p65-139

    Article  Google Scholar 

  47. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A. 217, 269–298 (1973). https://doi.org/10.1016/0375-9474(73)90196-6

    Article  Google Scholar 

  48. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, The role of collective effects for nuclear level density systematics. Yad. Fiz. 29, 875 (1979)

    Google Scholar 

  49. A.V. Ignatyuk, J.L. Weil, S. Raman et al., Density of discrete levels in 116Sn. Phys. Rev. C 47, 1504–1513 (1993). https://doi.org/10.1103/PhysRevC.47.1504

    Article  Google Scholar 

  50. A. Yadav, P.P. Singh, M.K. Sharma et al., Large pre-equilibrium contribution in α+natNi interactions at ~ 8–40 MeV. Phys. Rev. C 78, 044606 (2008). https://doi.org/10.1103/PhysRevC.78.044606

    Article  Google Scholar 

  51. V.N. Levkovski, Cross sections of medium mass nuclide activation (A=40-100) by medium energy protons and alpha-particles (E=10-50 MeV), Act.Cs.By Protons and Alphas, Moscow, 1991

  52. S. Tanaka, Reactions of nickel with alpha-particles. J. Phys. Soc. Jpn. 15, 2159–2167 (1960). https://doi.org/10.1143/JPSJ.15.2159

    Article  Google Scholar 

  53. P.H. Stelson, F.K. McGowan, Cross sections for (alpha, n) reactions for medium- weight nuclei. Phys. Rev. 133, B911–B919 (1964). https://doi.org/10.1103/PhysRev.133.B911

    Article  Google Scholar 

  54. W. Hille, M. Hille, P. Uhl et al., Excitation functions of (p, n) and (a, n) reactions on Ni, Cu and Zn. Nucl. Phys. A 198, 625–640 (1972). https://doi.org/10.1016/0375-9474(72)90713-0

    Article  Google Scholar 

  55. S.N. Ghoshal, An experimental verification of the theory of compound nucleus. Phys. Rev. 80, 939–942 (1950). https://doi.org/10.1103/PhysRev.80.939

    Article  Google Scholar 

  56. J.L. Zyskind, J.M. Davidson, M.T. Esat et al., Competition cusps in (alpha, gamma) reactions. Nucl. Phys. A 331, 180–192 (1979). https://doi.org/10.1016/0375-9474(79)90308-7

    Article  Google Scholar 

  57. A.E. Vlieks, J.F. Morgan, S.L. Blatt, Total cross sections for some (α, n) and (α, p) reactions in medium-weight nuclei. Nucl. Phys. A 224, 492–502 (1974). https://doi.org/10.1016/0375-9474(74)90551-X

    Article  Google Scholar 

  58. G.I.Y. Antropov A.E., Zarubın P.P., Aleksandrov YU.A., Cross sections measurements of (p,n),(a,pn),(a,xn) reactions on nuclei Middle Atomic Weight, in 35th Conference on Nuclear Spectroscopy and Nuclear Structure, Leningrad, 1985, p. 369

  59. M.N. Aslam, S.M. Qaim, Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl. Radiat. Isot. 89, 65–73 (2014). https://doi.org/10.1016/j.apradiso.2014.02.007

    Article  Google Scholar 

  60. Y. Skakun, S.M. Qaim, Excitation function of the 64Ni(α, p)67Cu reaction for production of 67Cu. Appl. Radiat. Isot. 60, 33–39 (2004). https://doi.org/10.1016/j.apradiso.2003.09.003

    Article  Google Scholar 

  61. R.L. Paul, L.J. Harris, P.A.J. Englert et al., Production of cosmogenic nuclides in thick targets by alpha bombardment Part I—short-lived radioisotopes. Nucl. Inst. Methods Phys. Res. B. 100, 464–470 (1995). https://doi.org/10.1016/0168-583x(95)00355-x

    Article  Google Scholar 

  62. R. Michel, G. Brinkmann, R. Stock, Integral excitation functions of alpha-induced reactions on titanium, iron and nickel. Radiochim. Acta 32, 173–189 (1983). https://doi.org/10.1524/ract.1983.32.4.173

    Article  Google Scholar 

  63. N.L. Singh, S. Mukherjee, M.S. Gadkari, Excitation functions of alpha induced reactions on natural nickel up to 50 MeV. Int. J. Mod. Phys. E 14, 611–629 (2005). https://doi.org/10.1142/S021830130500348X

    Article  Google Scholar 

  64. H. Muramatsu, E. Shirai, H. Nakahara et al., Alpha particle bombardments of natural nickel target for the production of 61Cu. Appl. Radiat. Isot. 29, 611–614 (1978). https://doi.org/10.1016/0020-708X(78)90094-7

    Article  Google Scholar 

  65. S. Takacs, F. Tarkanyi, Z. Kovacs, Excitation function of alpha-particle induced nuclear reactions on natural nickel. Nucl. Instrum. Methods B 113, 424–428 (1996). https://doi.org/10.1016/0168-583X(95)01349-0

    Article  Google Scholar 

  66. H. Gruppelaar, P. Nagel, P.E. Hodgson, Pre-equilibrium processes in nuclear reaction theory: the state of the art and beyond. La Riv. Del Nuovo Cim. Ser. 3(9), 1–46 (1986). https://doi.org/10.1007/BF02725961

    Article  Google Scholar 

  67. J. Bisplinghoff, Configuration mixing in preequilibrium reactions: a new look at the hybrid-exciton controversy. Phys. Rev. C 33, 1569–1580 (1986). https://doi.org/10.1103/PhysRevC.33.1569

    Article  Google Scholar 

  68. J. Ernst, J.R. Rao, A unified model of preequilibrium decay. Zeitschrift für Physik A Hadrons and Nuclei 281, 129–135 (1977). https://doi.org/10.1007/BF01408624

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rıdvan Baldık.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baldık, R., Yılmaz, A. A study on the excitation functions of 60,62Ni(α,n), 60,61Ni(α,2n), 58,64Ni(α,p), natNi(α,x) reactions. NUCL SCI TECH 29, 156 (2018). https://doi.org/10.1007/s41365-018-0500-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0500-3

Keywords

  • Nuclear reaction models and methods
  • Level density
  • Alpha-induced reactions
  • ALICE/ASH code
  • TALYS 1.8 code