E. Yildiz, A. Aydin, Calculation of cross-sections and astrophysical S-factors for 62Ni(α,n) and 62Ni(α,γ) reactions of structural fusion material nickel. J. Fusion Energy 35, 605–607 (2016). https://doi.org/10.1007/s10894-016-0079-9
Article
Google Scholar
F. Szelecsényi, Measurement of cross sections of proton induced nuclear reactions on Ti, Ni, Zn, Cd and Au up to 30 MeV and their applications in radioisotope (2009)
E. Tel, A. Kara, Neutron, proton and alpha emission spectra of nickel isotopes for proton induced reactions. J. Fusion Energy 31, 257–261 (2012). https://doi.org/10.1007/s10894-011-9470-8
Article
Google Scholar
E. Tel, Study on some structural fusion materials for (n, p) reactions up to 30 MeV energy. J. Fusion Energy 29, 332–336 (2010). https://doi.org/10.1007/s10894-010-9285-z
Article
Google Scholar
E. Tel, C. Durgu, N.N. Akti, Ş. Okuducu, Calculations of excitation functions of some structural fusion materials for (n, t) Reactions up to 50 MeV energy. J. Fusion Energy 29, 290–294 (2010). https://doi.org/10.1007/s10894-010-9277-z
Article
Google Scholar
E. Tel, S. Akca, M. Sahan et al., The comparison of (n, p), (n, α), (n,2n) and (α, n) reaction cross-sections for 7Li and 9Be target nuclei. J. Fusion Energy. 35(4), 709–714 (2016). https://doi.org/10.1007/s10894-016-0094-x
Article
Google Scholar
B. Demir, H. Sarpün, A. Kaplan et al., Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50,52Cr. J. Fusion Energy 34, 808–816 (2015). https://doi.org/10.1007/s10894-015-9889-4
Article
Google Scholar
H. Sarpün, A. Aydın, A. Kaplan et al., Double differential charged particle emission cross sections and stopping power calculations for structural fusion materials 58,60Ni. J. Fusion Energy 34, 1306–1313 (2015). https://doi.org/10.1007/s10894-015-9961-0
Article
Google Scholar
A. Aydin, H. Pekdogan, A. Kaplan et al., Comparison of level density models for the 60,61,62,64Ni(p, n) reactions of structural fusion material nickel from threshold to 30 MeV. J. Fusion Energy 34, 1105–1108 (2015). https://doi.org/10.1007/s10894-015-9927-2
Article
Google Scholar
B. Demir, A. Kaplan, V. Çapalı et al., Neutron production cross-section and Geant4 calculations of the structural fusion material 59Co for (α, xn) and (γ, xn) reactions. J. Fusion Energy 34, 636–641 (2015). https://doi.org/10.1007/s10894-015-9860-4
Article
Google Scholar
A. Kaplan, V. ÇapalI, H. Özdoǧan et al., (3He, xn) reaction cross-section calculations for the structural fusion material 181Ta in the energy range of 14–75 MeV. J. Fusion Energy 33, 510–515 (2014). https://doi.org/10.1007/s10894-014-9705-6
Article
Google Scholar
F.A. Uğur, E. Tel, A.A. Gökçe, A study on 19F(n, α) reaction cross section. J. Fusion Energy 32, 414–418 (2013). https://doi.org/10.1007/s10894-012-9587-4
Article
Google Scholar
E. Tel, F.A. Ugur, A.A. Gokce, Alpha induced reaction cross section calculations of tantalum nucleus. J. Fusion Energy 32, 304–310 (2013). https://doi.org/10.1007/s10894-012-9550-4
Article
Google Scholar
H. Aytekin, O. Artun, R. Baldık, Cross-section calculations of proton induced (p, n) and (p,2n) reactions for production of diagnostic 67Ga, 81Rb, 111In, 123,124I, 123Cs and 123Xe radioisotopes. J. Radioanal. Nucl. Chem. 298, 95–103 (2013). https://doi.org/10.1007/s10967-013-2478-y
Article
Google Scholar
R. Baldık, H. Aytekin, E. Tel, Equilibrium and pre-equilibrium calculations of cross-sections of (p, xn) reactions on 89Y, 90Zr and 94Mo targets used for the production of 89Zr, 90Nb and 94Tc positron-emitting radionuclides. Pramana 80, 251–261 (2013). https://doi.org/10.1007/s12043-012-0472-5
Article
Google Scholar
R. Baldık, H. Aytekin, O. Artun, Investigation of excitation functions for (n, 2n) reactions on some samarium, europium and gadolinium isotopes in the mass region 144 ≤ A ≤ 160. Mod. Phys. Lett. A 29, 1450074 (2014). https://doi.org/10.1142/S0217732314500746
Article
Google Scholar
H. Aytekin, R. Baldik, Pre-equilibrium and equilibrium calculations of (n, p) reactions on 32S, 64Zn, 67Zn, 89Y, 90Zr and 153Eu targets used for production of 32P, 64Cu, 67Cu, 89Sr, 90Y and 153Sm therapeutic radionuclides. Ann. Nucl. Energy 53, 439–446 (2013). https://doi.org/10.1016/j.anucene.2012.09.028
Article
Google Scholar
R. Baldik, A. Dombayci, Investigation of the production of 68Ga using pre-equilibrium models. Appl. Radiat. Isot. 113, 10–17 (2016). https://doi.org/10.1016/j.apradiso.2016.04.002
Article
Google Scholar
O. Artun, H. Aytekin, Calculation of excitation functions of proton, alpha and deuteron induced reactions for production of medical radioisotopes 122–125I. Nucl. Instrum. Meth. B. 345, 1–8 (2015). https://doi.org/10.1016/j.nimb.2014.12.029
Article
Google Scholar
A. Koning, S. Hilaire, S. Goriely, Talys-1.8 A Nuclear Reaction Program, (2015). http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf. Accessed 2017.
A.J. Koning, M.C. Duijvestijn, A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl. Phys. A 744, 15–76 (2004). https://doi.org/10.1016/j.nuclphysa.2004.08.013
Article
Google Scholar
M. Yiğit, E. Tel, H. Sarpün, Excitation function calculations for α + 93Nb nuclear reactions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 385, 59–64 (2016). https://doi.org/10.1016/j.nimb.2016.08.019
Article
Google Scholar
A. Kara, T. Korkut, M. Yigit et al., Modelling study on production cross sections of 111In radioisotopes used in nuclear medicine. Kerntechnik 80, 270–274 (2015). https://doi.org/10.3139/124.110527
Article
Google Scholar
M. Eslami, T. Kakavand, M. Mirzaii, Theoretical approach to study the light particles induced production routes of 22Na. Ann. Nucl. Energy 83, 14–24 (2015). https://doi.org/10.1016/j.anucene.2015.04.004
Article
Google Scholar
I.H. Sarpün, A. Aydin, A. Kaplan et al., Comparison of fission barrier and level density models for (α, f) reaction of some heavy nuclei. Ann. Nucl. Energy 70, 175–179 (2014). https://doi.org/10.1016/j.anucene.2014.03.017
Article
Google Scholar
M. Yiğit, A. Kara, Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66–68Zn targets. Nucl. Eng. Technol. 49, 996–1005 (2017). https://doi.org/10.1016/j.net.2017.03.006
Article
Google Scholar
G. Audi, F.G. Kondev, M. Wang et al., NUBASE2012 evaluation of nuclear properties. Nucl. Data Sheets 36, 1157–1286 (2012). https://doi.org/10.1016/j.nds.2014.06.127
Article
Google Scholar
S.J. Zinkle, N.M. Ghoniem, Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51–52, 55–71 (2000). https://doi.org/10.1016/S0920-3796(00)00320-3
Article
Google Scholar
N. Amjed, F. Tarkanyi, A. Hermanne et al., Activation cross sections of proton induced reactions on natural Ni up to 65MeV. Appl. Radiat. Isot. 92, 73–84 (2014). https://doi.org/10.1016/j.apradiso.2014.06.008
Article
Google Scholar
R.D. Neirinckx, Excitation function for the 60Ni(a,2n)62Zn reaction and production of 62Zn bleomycin. Int. J. Appl. Radiat. Isot. 28, 808–809 (1977). https://doi.org/10.1016/0020-708X(77)90121-1
Article
Google Scholar
M. Broeders, C.H.M. Yu Konobeyev, A. Yu Korovin et al., ALICE/ASH pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies (Forschungszentrum Karlsruhe, Karlsruhe, 2006), pp. 1–230. https://publikationen.bibliothek.kit.edu/270064701
Google Scholar
EXFOR, EXFOR/CSISRS (Experimental Nuclear Reaction Data File), EXFOR/CSISRS (Experimental Nucl. React. Data File). (2017)
M. Blann, Hybrid model for pre-equilibrium decay in nuclear reactions. Phys. Rev. Lett. 27, 337–340 (1971)
Article
Google Scholar
J.J. Griffin, Statistical model of intermediate structure. Phys. Rev. Lett. 17, 478 (1966). https://doi.org/10.1103/PhysRevLett.17.478
Article
Google Scholar
B.J. Harp, G.D. Miller, J.M. Berne, Attainment of statistical equilibrium in excited nuclei. Phys. Rev. 165, 1166–1169 (1968). https://doi.org/10.1103/PhysRev.165.1166
Article
Google Scholar
M. Blann, A. Mignerey, Pre-equilibrium decay at moderate excitations and the hybrid model. Nucl. Phys. A 186, 245–256 (1972). https://doi.org/10.1016/0375-9474(72)90043-7
Article
Google Scholar
M. Blann, Preequilibrium decay. Annu. Rev. Nucl. Sci. 25, 123–166 (1975). https://doi.org/10.1146/annurev.ns.25.120175.001011
Article
Google Scholar
M. Blann, H.K. Vonach, Global test of modified precompound decay models. Phys. Rev. C 28, 1475–1492 (1983). https://doi.org/10.1103/PhysRevC.28.1475
Article
Google Scholar
C. Kalbach, Two-component exciton model: basic formalism away from shell closures. Phys. Rev. C 33, 818–833 (1986). https://doi.org/10.1103/PhysRevC.33.818
Article
Google Scholar
H.A. Bethe, An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 50, 332–341 (1936). https://doi.org/10.1103/PhysRev.50.332
Article
MATH
Google Scholar
H.A. Bethe, Nuclear physics B. nuclear dynamics, theoretical. Rev. Mod. Phys. 9, 69–244 (1937). https://doi.org/10.1103/RevModPhys.9.69
Article
MATH
Google Scholar
E. Erba, U. Facchini, E. Saetta, Menichella, Statistical emission in nuclear reactions and nuclear level density (*). Il Nuovo Cimento 22, 1237–1260 (1961). https://doi.org/10.1007/BF02786895
Article
Google Scholar
T.D. Newton, Shell effects on the spacing of nuclear levels. Can. J. Phys. 34, 804–829 (1956). https://doi.org/10.1139/p56-090
Article
MATH
Google Scholar
A. Cameron, Nuclear level spacings. Can. J. Phys. 36, 1040–1057 (1958). https://doi.org/10.1139/p58-112
Article
Google Scholar
M. Guttormsen, M. Hjorth-Jensen, E. Melby et al., Energy shifted level densities in rare earth region. Phys. Rev. C 61, 067302 (2000). https://doi.org/10.1103/PhysRevC.61.067302
Article
Google Scholar
A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Canadian J. Phys. 43(8), 1446–1496 (1965). https://doi.org/10.1139/p65-139
Article
Google Scholar
W. Dilg, W. Schantl, H. Vonach, M. Uhl, Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A. 217, 269–298 (1973). https://doi.org/10.1016/0375-9474(73)90196-6
Article
Google Scholar
A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, The role of collective effects for nuclear level density systematics. Yad. Fiz. 29, 875 (1979)
Google Scholar
A.V. Ignatyuk, J.L. Weil, S. Raman et al., Density of discrete levels in 116Sn. Phys. Rev. C 47, 1504–1513 (1993). https://doi.org/10.1103/PhysRevC.47.1504
Article
Google Scholar
A. Yadav, P.P. Singh, M.K. Sharma et al., Large pre-equilibrium contribution in α+natNi interactions at ~ 8–40 MeV. Phys. Rev. C 78, 044606 (2008). https://doi.org/10.1103/PhysRevC.78.044606
Article
Google Scholar
V.N. Levkovski, Cross sections of medium mass nuclide activation (A=40-100) by medium energy protons and alpha-particles (E=10-50 MeV), Act.Cs.By Protons and Alphas, Moscow, 1991
S. Tanaka, Reactions of nickel with alpha-particles. J. Phys. Soc. Jpn. 15, 2159–2167 (1960). https://doi.org/10.1143/JPSJ.15.2159
Article
Google Scholar
P.H. Stelson, F.K. McGowan, Cross sections for (alpha, n) reactions for medium- weight nuclei. Phys. Rev. 133, B911–B919 (1964). https://doi.org/10.1103/PhysRev.133.B911
Article
Google Scholar
W. Hille, M. Hille, P. Uhl et al., Excitation functions of (p, n) and (a, n) reactions on Ni, Cu and Zn. Nucl. Phys. A 198, 625–640 (1972). https://doi.org/10.1016/0375-9474(72)90713-0
Article
Google Scholar
S.N. Ghoshal, An experimental verification of the theory of compound nucleus. Phys. Rev. 80, 939–942 (1950). https://doi.org/10.1103/PhysRev.80.939
Article
Google Scholar
J.L. Zyskind, J.M. Davidson, M.T. Esat et al., Competition cusps in (alpha, gamma) reactions. Nucl. Phys. A 331, 180–192 (1979). https://doi.org/10.1016/0375-9474(79)90308-7
Article
Google Scholar
A.E. Vlieks, J.F. Morgan, S.L. Blatt, Total cross sections for some (α, n) and (α, p) reactions in medium-weight nuclei. Nucl. Phys. A 224, 492–502 (1974). https://doi.org/10.1016/0375-9474(74)90551-X
Article
Google Scholar
G.I.Y. Antropov A.E., Zarubın P.P., Aleksandrov YU.A., Cross sections measurements of (p,n),(a,pn),(a,xn) reactions on nuclei Middle Atomic Weight, in 35th Conference on Nuclear Spectroscopy and Nuclear Structure, Leningrad, 1985, p. 369
M.N. Aslam, S.M. Qaim, Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl. Radiat. Isot. 89, 65–73 (2014). https://doi.org/10.1016/j.apradiso.2014.02.007
Article
Google Scholar
Y. Skakun, S.M. Qaim, Excitation function of the 64Ni(α, p)67Cu reaction for production of 67Cu. Appl. Radiat. Isot. 60, 33–39 (2004). https://doi.org/10.1016/j.apradiso.2003.09.003
Article
Google Scholar
R.L. Paul, L.J. Harris, P.A.J. Englert et al., Production of cosmogenic nuclides in thick targets by alpha bombardment Part I—short-lived radioisotopes. Nucl. Inst. Methods Phys. Res. B. 100, 464–470 (1995). https://doi.org/10.1016/0168-583x(95)00355-x
Article
Google Scholar
R. Michel, G. Brinkmann, R. Stock, Integral excitation functions of alpha-induced reactions on titanium, iron and nickel. Radiochim. Acta 32, 173–189 (1983). https://doi.org/10.1524/ract.1983.32.4.173
Article
Google Scholar
N.L. Singh, S. Mukherjee, M.S. Gadkari, Excitation functions of alpha induced reactions on natural nickel up to 50 MeV. Int. J. Mod. Phys. E 14, 611–629 (2005). https://doi.org/10.1142/S021830130500348X
Article
Google Scholar
H. Muramatsu, E. Shirai, H. Nakahara et al., Alpha particle bombardments of natural nickel target for the production of 61Cu. Appl. Radiat. Isot. 29, 611–614 (1978). https://doi.org/10.1016/0020-708X(78)90094-7
Article
Google Scholar
S. Takacs, F. Tarkanyi, Z. Kovacs, Excitation function of alpha-particle induced nuclear reactions on natural nickel. Nucl. Instrum. Methods B 113, 424–428 (1996). https://doi.org/10.1016/0168-583X(95)01349-0
Article
Google Scholar
H. Gruppelaar, P. Nagel, P.E. Hodgson, Pre-equilibrium processes in nuclear reaction theory: the state of the art and beyond. La Riv. Del Nuovo Cim. Ser. 3(9), 1–46 (1986). https://doi.org/10.1007/BF02725961
Article
Google Scholar
J. Bisplinghoff, Configuration mixing in preequilibrium reactions: a new look at the hybrid-exciton controversy. Phys. Rev. C 33, 1569–1580 (1986). https://doi.org/10.1103/PhysRevC.33.1569
Article
Google Scholar
J. Ernst, J.R. Rao, A unified model of preequilibrium decay. Zeitschrift für Physik A Hadrons and Nuclei 281, 129–135 (1977). https://doi.org/10.1007/BF01408624
Article
Google Scholar