Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region


The mass attenuation coefficients (µ/ρ) for different parts (root, flower, stem, and leaf) of three medicinal aromatic plants (Teucrium chamaedrys L. subsp. sinuatum, Rheum ribes, and Chrysophthalmum montanum) were measured using an 241Am photon source in a stable geometry and calculated using the Monte Carlo N-Particle Transport Code System-extended (MCNPX) code and the WinXCOM program. The experimental and theoretical MCNPX and WinXCOM values exhibited good agreement. The measured mass attenuation coefficient values were then used to compute the effective atomic number (Zeff) and electron density (NE) of the samples. The results reveal that S1-S (stem of Teucrium chamaedrys L. subsp. sinuatum) has the highest values of µ/ρ and Zeff.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    K.B. Kalpana, N. Devipriya, M. Srinivasan et al., Evaluating the radioprotective effect of hesperidin in the liver of Swiss albino mice. Eur. J. Pharmacol. 658, 206–212 (2011).

    Article  Google Scholar 

  2. 2.

    K.B. Kalpana, N. Devipriya, M. Srinivasan et al., Investigation of the radioprotective efficacy of hesperidin against gamma-radiation induced cellular damage in cultured human peripheral blood lymphocytes. Mutat. Res. 676, 54–61 (2009).

    Article  Google Scholar 

  3. 3.

    W. Lee, W. Kang, N. Kim et al., Radioprotective effects of a polysaccharide purified from Lactobacillus plantarum-fermented Ishigeokamurae against oxidative stress caused by gamma ray-irradiation in zebrafish in vivo model. J. Funct. Food 28, 83–89 (2017).

    Article  Google Scholar 

  4. 4.

    S.J. Hosseinimehr, Trends in the development of radioprotective agents. Drug Discov. Today 12, 794–805 (2007).

    Article  Google Scholar 

  5. 5.

    A. Pezeshk, The effects of ionizing radiation on DNA: the role of thiols as radioprotectors. Life Sci. 74, 2423–2429 (2004).

    Article  Google Scholar 

  6. 6.

    R. Arora, D. Gupta, R. Chawla et al., Radioprotection by plant products: present status and future prospects. Phytother. Res. 19, 1–22 (2005).

    Article  Google Scholar 

  7. 7.

    M. Kurudirek, Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV. Appl. Radiat. Isot. 94, 1–7 (2014).

    Article  Google Scholar 

  8. 8.

    M. Kurudirek, Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV-10 GeV. Nucl. Instrum. Methods B 336, 130–134 (2014).

    Article  Google Scholar 

  9. 9.

    M. Kurudirek, T. Onaran, Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions. Radiat. Phys. Chem. 112, 125–138 (2015).

    Article  Google Scholar 

  10. 10.

    G. Lakshminarayana, A. Kumar, M.G. Dong et al., Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J. Non Cryst. Solids 481, 65–73 (2018).

    Article  Google Scholar 

  11. 11.

    A. Kumar, M.I. Sayyed, M. Dong et al., Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Non Cryst. Solids 48, 604–607 (2018).

    Article  Google Scholar 

  12. 12.

    L. Gerward, N. Guilbert, K.B. Jensen et al., WinXCom – a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004).

    Article  Google Scholar 

  13. 13.

    J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. J. Quant. Spectrosc. Radiat. 109, 1260–1265 (2008).

    Article  Google Scholar 

  14. 14.

    S. Seven, I.H. Karahan, Ö.F. Bakkaloglu, The measurement of total mass attenuation coefficients of CoCuNi alloys. J. Quant. Spectrosc. Radiat 83, 237–242 (2004).

    Article  Google Scholar 

  15. 15.

    M. Dong, X. Xue, A. Kumar et al., A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018).

    Article  Google Scholar 

  16. 16.

    B.O. Elbashir, M.G. Dong, M.I. Sayyed et al., Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Phys. 9, 6–11 (2018).

    Article  Google Scholar 

  17. 17.

    M.I. Sayyed, M.Y. AlZaatreh, M.G. Dong et al., A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Results Phys. 7, 2528–2533 (2017).

    Article  Google Scholar 

  18. 18.

    British Standards Institute – BSI (2011): Solid Biofuels Standards n°EN 14774-1:2009, EN 14775:2009, EN 15148:2009, EN 15104:2011, EN 15289:2011 [online]. (Accessed 21 January 2011)

  19. 19.

    F. Akman, R. Durak, M.R. Kaçal et al., Study of absorption parameters around the K edge for selected compounds of Gd. X Ray Spectrom. 45(2), 103–110 (2016).

    Article  Google Scholar 

  20. 20.

    F. Akman, R. Durak, M.F. Turhan et al., Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015).

    Article  Google Scholar 

  21. 21.

    F. Akman, M.R. Kaçal, F. Akman et al., Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95(10), 1005–1011 (2017).

    Article  Google Scholar 

  22. 22.

    RSICC computer code collection. MCNPX user’s manual version 2.4.0. Monte Carlo n-particle transport code system for multiple and high energy applications, 2002

  23. 23.

    H.O. Tekin, MCNP-X Monte Carlo Code application for mass attenuation coefficients of concrete at different energies by modeling 3X3inch NaI(Tl) detector and comparison with XCOM and Monte Carlo Data. Sci. Technol. Nucl. Install. 2016, (2016).

  24. 24.

    I. Akkurt, H.O. Tekin, A. Mesbahi, Calculation of detection efficiency for the gamma detector using MCNPX. Acta Phys. Pol. A 128, 332–334 (2015).

    Article  Google Scholar 

  25. 25.

    V.P. Singh, S.P. Shirmardi, M.E. Medhat et al., Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015).

    Article  Google Scholar 

  26. 26.

    A.M. El-Khayatt, A.M. Ali, V.P. Singh, Photon attenuation coefficients of heavy-metal oxide glasses by MCNP code, XCOM program and experimental data: a comparison study. Nucl. Instrum. Methods A735, 207–212 (2014).

    Article  Google Scholar 

  27. 27.

    H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 121, 122–125 (2017).

    Article  Google Scholar 

  28. 28.

    A. Mesbahi, H. Ghiasi, Shielding properties of the ordinary concrete loaded with micro- and nanoparticles against neutron and gamma radiations. Appl. Radiat. Isot. 136, 27–31 (2018).

    Article  Google Scholar 

  29. 29.

    H.O. Tekin, V.P. Singh, T. Manici et al., Validation of MCNPX with experimental results of mass attenuation coefficients for cement, gypsum and mixture. J. Radiat. Prot. Res. 42, 154–157 (2017).

    Article  Google Scholar 

  30. 30.

    M.G. Dong, R. El-Mallawany, M.I. Sayyed et al., Shielding properties of 80TeO2–5TiO2-(15-x)WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017).

    Article  Google Scholar 

  31. 31.

    G. Lakshminarayana, S.O. Baki, K.M. Kaky et al., Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non. Cryst. Solids. 471, 222–237 (2017).

    Article  Google Scholar 

  32. 32.

    H.O. Tekin, M.I. Sayyed, E.E. Altunsoy et al., Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code. Dig. J. Nanomater. Biostruct. 12, 861–867 (2017)

    Google Scholar 

  33. 33.

    H.O. Tekin, M.I. Sayyed, T. Manici et al., Photon shielding characterizations of bismuth modified borate—silicate-tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 211, 9–16 (2018).

    Article  Google Scholar 

  34. 34.

    M.I. Sayyed, H. Elhouichet, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem. 130, 335–342 (2017).

    Article  Google Scholar 

  35. 35.

    M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat. Phys. Chem. 102, 139–146 (2014).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. Akman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sayyed, M.I., Akman, F., Geçibesler, I.H. et al. Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. NUCL SCI TECH 29, 144 (2018).

Download citation


  • Medicinal
  • Aromatic plant
  • MCNPX code
  • Mass attenuation coefficient
  • Photon
  • WinXCOM