Skip to main content

Advertisement

Log in

Performance of a small AT-TPC prototype

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A small prototype of an active-target time projection chamber detector based on the gas electron multiplier (GEM) readout technique was designed and constructed. Simulation calculations were performed to analyze the electric field distribution and optimize the design. In particular, a guard ring installed above the GEM foil may play an important role in shaping the electric field in the gas vessel and improving the overall performance of the detector. The best results were obtained at a guard-ring voltage of − 950 V. By using a collimated \(\alpha \)-particle source, an energy resolution of 3.6–4.0 keV can be achieved for deposited energies of 18–21 keV, respectively. A position resolution of less 0.2 mm was observed along the electron drift direction, whereas the resolution in the readout plane was approximately 0.45 mm. A time resolution of less than 20 ns was obtained. By using helium as the primary working gas as well as the target material, \(\alpha + \alpha \) elastic scattering events can be clearly imaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Charpak, R. Bouclier, T. Bressani et al., Some read-out system for proportional multiwire chambers. Nucl. Instrum. Methods 65, 217–220 (1968). https://doi.org/10.1016/0029-554X(68)90568-5

    Article  Google Scholar 

  2. Y.L. Ye, Z.Y. Di, Z.H. Li et al., Study and application of low pressure multi-wire proportional chambers. Nucl. Instrum. Methods A 515, 718–724 (2003). https://doi.org/10.1016/j.nima.2003.08.113

    Article  Google Scholar 

  3. L.Y. Han, Q.T. Li, Q. Faisal et al., Study of a multi-wire proportional chamber with a cathode strip and delay-line readout. Chin. Phys. C 33, 364–368 (2009). https://doi.org/10.1088/1674-1137/33/5/009

    Article  Google Scholar 

  4. P. Fonte, Applications and new developments in resistive plate chambers. IEEE Trans. Nucl. Sci. 49, 881–887 (2002). https://doi.org/10.1109/TNS.2002.1039583

    Article  Google Scholar 

  5. J. Ying, Y.L. Ye, Y. Ban et al., Beam test results of a resistive plate chamber made of Chinese bakelites. Nucl. Instrum. Methods A 459, 513–522 (2001). https://doi.org/10.1016/S0168-9002(00)01046-9

    Article  Google Scholar 

  6. Q.T. Li, Y.L. Ye, C. Wen et al., Study of spatial resolution properties of a glass RPC. Nucl. Instrum. Methods 663, 22–25 (2012). https://doi.org/10.1016/j.nima.2011.10.006

    Article  Google Scholar 

  7. W. Blum, L. Rolandi, Particle Detection with Drift Chambers (Springer, Berlin, 1994), p. 120. (Second printing)

    Google Scholar 

  8. J.N. Marx, D.R. Nygren, The time projection chamber. Phys. Today 31, 46–53 (1978). https://doi.org/10.1063/1.2994775

    Article  Google Scholar 

  9. C. Brand, G. Cairanti, P. Charpentier et al., The DELPHI time projection chamber. Nucl. Instrum. Methods A 283, 567–572 (1989). https://doi.org/10.1016/0168-9002(89)91417-4

    Article  Google Scholar 

  10. M. Anderson, F. Bieser, R. Bossingham et al., The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods A 499, 659–678 (2003). https://doi.org/10.1016/S0168-9002(02)01964-2

    Article  Google Scholar 

  11. J. Bachler, J. Bracinik, H.G. Fischer et al., Development of a TPC detector for the ALICE experiment. Nucl. Instrum. Methods A 419, 511–514 (1998). https://doi.org/10.1016/S0168-9002(98)00858-4

    Article  Google Scholar 

  12. B.J. Zheng, Y.L. Li, Z.Y. Deng et al., Drift field improvement and test in a GEM-TPC prototype. Chin. Phys. C 35, 56–60 (2011). https://doi.org/10.1088/1674-1137/35/1/012

    Article  Google Scholar 

  13. G.D. Alkhazov, M.N. Andronenko, A.V. Dobrovolsky et al., Nuclear matter distributions in \(^{6}\)He and \(^8\)He from small angle p-He scattering in inverse kinematics at intermediate energy. Phys. Rev. Lett. 78, 2313–2316 (1997). https://doi.org/10.1103/PhysRevLett.78.2313

    Article  Google Scholar 

  14. B. Blank, L. Hay, J. Huikari et al., A time projection chamber for the three-dimensional reconstruction of two-proton radioactivity events. Nucl. Instrum. Methods A 613, 65–78 (2010). https://doi.org/10.1016/j.nima.2009.10.140

    Article  Google Scholar 

  15. A. Fritsch, T. Suzuki, A. Tamii et al., High-resolution study of Gamow–Teller transitions in the \(^{48}\text{ Ti }\)(\(^{3}\text{ He }\), t)\(^{48}\)V reaction. Phys. Rev. C 93, 064326 (2016). https://doi.org/10.1103/PhysRevC.93.064326

    Article  Google Scholar 

  16. Z.X. Cao, Y.L. Ye, Study of the structure of unstable nuclei through the reaction experiments. Sci. China Phys. Mech. Astron. 54(Suppl.1), 1–5 (2011). https://doi.org/10.1007/s11433-011-4423-9

    Article  Google Scholar 

  17. Z.H. Yang, Y.L. Ye, Z.H. Li et al., Observation of enhanced monopole strength and clustering in \(^{12}\)Be. Phys. Rev. Lett. 112, 162501 (2014). https://doi.org/10.1103/PhysRevLett.112.162501

    Article  Google Scholar 

  18. J. Chen, J.L. Lou, Y.L. Ye et al., Elastic scattering and breakup of \(^{11}\)Be on deuterons at 26.9 A MeV. Phys. Rev. C 93, 064620 (2016). https://doi.org/10.1103/PhysRevC.94.064620

    Article  Google Scholar 

  19. M. Caamano, W. Mittig, H. Savajols et al., Resonance state in \(^{7}\) H. Phys. Rev. Lett. 99, 062502 (2007). https://doi.org/10.1103/PhysRevLett.99.062502

    Article  Google Scholar 

  20. S. Bailey, M. Freer, S. Cruz et al., Energy levels of \(^{18}\)F from the \(^{14}\)N+\(\alpha \) resonant reaction. Phys. Rev. C 90, 024302 (2014). https://doi.org/10.1103/PhysRevC.90.024302

    Article  Google Scholar 

  21. F. Sauli, New observations with the gas electron multiplier (GEM). Nucl. Instrum. Methods A 396, 50–66 (1997). https://doi.org/10.1016/S0168-9002(97)00648-7

    Article  Google Scholar 

  22. T. Furuno, T. Kawabata, S. Adachi et al., Development of MAIKo: the active target with \(\mu \)-PIC for RI beam experiments. J. Phys. Conf. Ser. 569, 012042 (2014). https://doi.org/10.1088/1742-6596/569/1/012042

    Article  Google Scholar 

  23. http://cern.ch/garfield. Accessed 10 Nov 2017

  24. D. Suzuki, M. Ford, D. Basin et al., Prototype AT-TPC: toward a new generation active target time projection chamber for radioactive beam experiments. Nucl. Instrum. Methods A 691, 39–54 (2012). https://doi.org/10.1016/j.nima.2012.06.050

    Article  Google Scholar 

  25. Z.X. Cao, Y.L. Ye, J. Xiao et al., Recoil proton tagged knockout reaction for \(^8\)He. J. Phys. Conf. Ser. 436, 012048 (2013). https://doi.org/10.1088/1742-6596/436/1/012048

    Article  Google Scholar 

  26. W. Jiang, Y.L. Ye, Z.H. Li et al., High-lying excited states in 10Be from the 9Be(9Be,10Be)8Be reaction. Sci. China PMA 60, 062011 (2017). https://doi.org/10.1007/s11433-017-9023-x

    Google Scholar 

  27. H.B. You, Z.H. Yang, Y.L. Ye et al., Construction and calibration of the multi-neutron correlation spectrometer at Peking University. Nucl. Instrum. Methods A 728, 47–52 (2013). https://doi.org/10.1016/j.nima.2013.06.037

    Article  Google Scholar 

  28. B.J. Zheng, The Simulation Study and Improvement of the Drift Field in TPC Detector (Tsinghua University, Beijing, 2010). (in Chinese)

    Google Scholar 

  29. X.Y. Lu, Study of 2-D X-rays Position-Sensitive Detectors Made of GEM (Institute of High Energy Physics Chinese Academy of Sciences, Beijing, 2012). (in Chinese)

    Google Scholar 

  30. http://lise.nscl.msu.edu. Accessed 20 Sept 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Te Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11405005 and 11535004) and the National Key R&D Program of China (No. 2018YFA0404403).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, JY., Li, QT., Ye, YL. et al. Performance of a small AT-TPC prototype. NUCL SCI TECH 29, 97 (2018). https://doi.org/10.1007/s41365-018-0437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0437-6

Keywords

Navigation