Skip to main content
Log in

Investigation of SPECT/CT cardiac imaging using Geant4

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose a friendly computational framework able to investigate particles tracking through different compartments of the human being using dedicated numerical techniques. The main building blocks of this framework are: (i) convenient X-ray spectra calculator for different filter/anode combination, (ii) realistic voxelized computational human phantom, (iii) validated Geant4-based Monte Carlo simulation, and (iv) extendable and free image processing software. We studied the multimodality SPECT/CT cardiac imaging using specific spectrum of the \(^{99\text{m}}\)Tc and 120 kVp X-ray beam, for internal and external exposure, respectively. The application of the framework to quantify the loss of information between combined and simultaneous coregistration was carried out. Two main objectives were addressed: (i) an ideal geometry was simulated for educational purposes (ii) a realistic case study was carried out, for research purposes, concerning the modeling of the GE Infinia II 3/8″ Gamma Camera. We compared the effect of using a NaI(Tl) and CZT crystal detector, and a LEHR and MEGP collimator with different uptake values of the heart organ (1:1, 5:1 and 50:1) for both simultaneous and combined SPECT/CT images. We confirmed the usefulness of the NaI(Tl) crystal with the LEHR collimator for such kind of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.H. Gershlick et al., Role of non-invasive imaging in the management of coronary artery disease: an assessment of likely change over the next 10 years. A report from the British Cardiovascular Society Working Group. Heart 93, 423–431 (2007). https://doi.org/10.1136/hrt.2006.108779

    Article  Google Scholar 

  2. H. Seo et al., Feasibility study on hybrid medical imaging device based on Compton imaging and magnetic resonance imaging. Appl. Radiat. Isot. 67, 1412–1415 (2009). https://doi.org/10.1016/j.apradiso.2009.02.082

    Article  Google Scholar 

  3. W.P. Segars, B.M. Tsui, Study of the efficacy of respiratory gating in myocardial SPECT using the new 4D NCAT phantom. IEEE Trans. Nucl. Sci. 49(3), 675–679 (2002). https://doi.org/10.1109/tns.2002.1039548

    Article  Google Scholar 

  4. L.S. Boia et al., Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation. Appl. Radiat. Isot. 70(1), 144–148 (2012). https://doi.org/10.1016/j.apradiso.2011.08.017

    Article  Google Scholar 

  5. C.H. Kim et al., The reference phantoms: voxel vs polygon. Ann. ICRP 45(1 Suppl), 188–201 (2016). https://doi.org/10.1177/0146645315626036

    Article  Google Scholar 

  6. D.B. Pelowitz et al., MCNPX Users Manual Version 2.6.0. LA-CP-07-1473 (Los Alamos National Laboratory, Los Alamos, 2007)

    Google Scholar 

  7. A. Ferrari et al., FLUKA: a multi-particle transport code. CERN 2005-10, INFN/TC_05/11, SLAC-R-773 (2005)

  8. S. Agostinelli et al., GEANT4-a simulation toolkit Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  9. S. Jan et al., GATE-Geant4 application for tomographic emission: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004)

    Article  Google Scholar 

  10. F. Zagni et al., Accurate modeling of a DOI capable small animal PET scanner using GATE. Appl. Radiat. Isot. 75, 105–114 (2013). https://doi.org/10.1016/j.apradiso.2013.02.003

    Article  Google Scholar 

  11. O. Kadri et al., Computation and parameterization of normalized glandular dose using Geant4. Nucl. Sci. Technol. 26(030303), 1–6 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.030303

    Google Scholar 

  12. L. Archambaul et al., Overview of Geant4 Applications in Medical Physics, in Conference: Nuclear Science Symposium Conference Record, 2003 IEEE, vol. 3. https://doi.org/10.1109/nssmic.2003.1352215

  13. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  14. J.B. Udo et al., Improved reconstructions and generalized filtered back projection for optical projection tomography. Appl. Opt. 50(4), 392–398 (2011). https://doi.org/10.1364/ao.50.000392

    Article  Google Scholar 

  15. C.H. Kim et al., HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver. Phys. Med. Biol. 53, 4093–4106 (2008). https://doi.org/10.1088/0031-9155/53/15/006

    Article  Google Scholar 

  16. A. John et al., The Geant4 visualization system—a multi-driver graphics system. Int. J. Model. Simul. Sci. Comput. 04, 1340001 (2013). https://doi.org/10.1142/s1793962313400011

    Article  Google Scholar 

  17. J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  18. A. Ma et al., Absorbed fractions in the revised MIRD head phantom calculated using MCNPX. J Nucl. Med. 54(2), 1032 (2013)

    Google Scholar 

  19. I.G. Zubal et al., Computerized three-dimensional segmented human anatomy. Med. Phys. 21, 299–302 (1994). https://doi.org/10.1118/1.597290

    Article  Google Scholar 

  20. ICRU, Photon, Electron, Proton and Neutron Interaction Data for Body Tissues ICRU Report No 46 (International Commission on Radiation Units and Measurement, Bethesda, MD, 1992)

  21. J. Punnoose et al., Technical note: spektr3.0—a computational tool for x-ray spectrum modeling and analysis. Med. Phys. 43(8), 4711–4717 (2016). https://doi.org/10.1118/1.4955438

    Article  Google Scholar 

  22. O. Kadri et al., Incorporation of the Goudsmit–Saunderson electron transport theory in the Geant4 Monte Carlo code. Nucl. Instrum. Methods Phys. Res. B 267, 3624–3632 (2009). https://doi.org/10.1016/j.nimb.2009.09.015

    Article  Google Scholar 

  23. H.C. Kim et al., Comparison of image uniformity with photon counting and conventional scintillation single-photon emission computed tomography system: a Monte Carlo simulation study. Nucl. Eng. Technol. 49(4), 776–780 (2017). https://doi.org/10.1016/j.net.2016.12.002

    Article  Google Scholar 

  24. P.A. Toft, J.A. Srensen, The Radon Transform—Theory and Implementation (Kgs. Lyngby, Denmark: Technical University of Denmark (DTU), 1996). http://orbit.dtu.dk/files/5529668/Binder1.pdf

  25. M. Lyra, A. Ploussi, Filtering in SPECT image reconstruction. Int. J. Biomed. Imaging, vol. 2011, Article ID 693795 (2011). https://doi.org/10.1155/2011/693795

  26. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51 (1978). https://doi.org/10.1109/proc.1978.10837

    Article  Google Scholar 

  27. M.-P. Garcia et al., TestDose: a nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry. Med. Phys. 42(12), 6885–6894 (2015). https://doi.org/10.1118/1.4934828

    Article  Google Scholar 

  28. M.-P. Garcia et al., Accelerated GPU based SPECT Monte Carlo simulations. Phys. Med. Biol. 61(11), 4001–4018 (2016). https://doi.org/10.1088/0031-9155/61/11/4001

    Article  Google Scholar 

  29. http://www.webqc.org/molecular-weight-of-CdZnTe.html. Accessed 20 May 2017

  30. M. Ashoor et al., Evaluation of Compton attenuation and photoelectric absorption coefficients by convolution of scattering and primary functions and counts ratio on energy spectra. Indian J. Nucl. Med. 30(3), 239–247 (2009). https://doi.org/10.4103/0972-3919.158532

    Google Scholar 

  31. http://bigwww.epfl.ch/sage/soft/snr. Accessed 25 May 2017

  32. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice Hall, Englewood Cliffs, 2008). ISBN: 013168728

    Google Scholar 

  33. Z. Wang et al., Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

  34. R. Brun, F. Rademakers, ROOT—An Object Oriented Data Analysis Framework, in Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A, vol. 389, p. 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X

  35. J. Allison et al., The GEANT4 visualisation system. Comput. Phys. Commun. 178, 331–365 (2008). https://doi.org/10.1016/j.cpc.2007.09.010

    Article  MATH  Google Scholar 

  36. P.P. Bruyant, Analytic and iterative reconstruction algorithms in SPECT. J. Nucl. Med. 43(10), 1343–1358 (2002)

    Google Scholar 

  37. S.M. Kim et al., Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. Phys. Med. Biol. 55(17), 5007–5027 (2010). https://doi.org/10.1088/0031-9155/55/17/009

    Article  Google Scholar 

  38. R. Gordon, R. Bender, G.T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–81 (1970). https://doi.org/10.1016/0022-5193(70)90109-8

    Article  Google Scholar 

  39. P.H. Pretorius et al., Monte Carlo simulations of the GE discovery alcyone CZT SPECT systems. IEEE Trans. Nucl. Sci. 62(3), 832–839 (2015). https://doi.org/10.1109/TNS.2015.2433533

    Article  Google Scholar 

  40. L. Chen, Y.-X. Wei, Monte Carlo simulations of the SNM spectra for CZT and NaI spectrometers. App. Radiat. Isot. 66, 1146–1150 (2008). https://doi.org/10.1016/j.apradiso.2008.01.008

    Article  Google Scholar 

  41. F. James, M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975). https://doi.org/10.1016/0010-4655(75)90039-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kadri.

Additional information

Supported by the College of Applied Medical Sciences Research Centre and the Deanship of Scientific Research at King Saud University of Saudi Arabia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfuraih, A., Kadri, O. & Alzimami, K. Investigation of SPECT/CT cardiac imaging using Geant4. NUCL SCI TECH 29, 105 (2018). https://doi.org/10.1007/s41365-018-0435-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0435-8

Keywords

Navigation