Characterization of CIAE developed double-sided silicon strip detector for charged particles

  • Xin-Xing Xu
  • Fanurs C. E. Teh
  • Cheng-Jian Lin
  • Jenny Lee
  • Feng Yang
  • Zhao-Qiao Guo
  • Tian-Shu Guo
  • Li-Jie Sun
  • Xin-Zhi Teng
  • Jia-Jian Liu
  • Peng-Jie Li
  • Peng-Fei Liang
  • Lei Yang
  • Nan-Ru Ma
  • Hui-Ming Jia
  • Dong-Xi Wang
  • Sylvain Leblond
  • Taras Lokotko
  • Qing-Qing Zhao
  • Huan-Qiao Zhang
Article
  • 51 Downloads

Abstract

A double-sided silicon strip detector (DSSD) with active area of \({48\, \hbox {mm}}\times {48\, \hbox {mm}}\) and thickness of \({300\, \upmu \hbox {m}}\) has been developed. Each side of DSSD consists of 48 strips, each with width of 0.9 mm and inter-strip separation of 0.1 mm. Electrical properties and detection performances including full depletion bias voltage, reverse leakage current, rise time, energy resolution and cross talk have been studied. At a bias of 80 V, leakage current in each strip is less than 15 nA, and rise time for alpha particle at 5157 keV is approximately 15 ns on both sides. Good energy resolutions have been achieved with 0.65–0.80% for the junction strips and 0.85–1.00% for the ohmic strips. The cross talk is found to be negligible on both sides. The overall good performance of DSSD indicates its readiness for various nuclear physics experiments.

Keywords

Double-sided silicon strip detector P-stop Detection performance Cross talk 

References

  1. 1.
    G. Keil, E. Lindner, Low-noise oxide passivated \(\text{ p }^+\text{ n }\) silicon detectors. Nucl. Instrum. Methods 101, 43–46 (1972).  https://doi.org/10.1016/0029-554X(72)90753-7 CrossRefGoogle Scholar
  2. 2.
    G. Keil, E. Lindner, Low-noise silicon planar detectors for room temperature application. Nucl. Instrum. Methods 104, 209–214 (1972).  https://doi.org/10.1016/0029-554X(72)90319-9 CrossRefGoogle Scholar
  3. 3.
    J. Kemmer, Fabrication of low noise silicon radiation detectors by the planar process. Nucl. Instrum. Methods 169, 499–502 (1980).  https://doi.org/10.1016/0029-554X(80)90948-9 CrossRefGoogle Scholar
  4. 4.
    J. Kemmer, Improvement of detector fabrication by the planar process. Nucl. Instrum. Methods A 226, 89–93 (1984).  https://doi.org/10.1016/0168-9002(84)90173-6 CrossRefGoogle Scholar
  5. 5.
    A. Ostrowski, S. Cherubini, T. Davinson et al., CD: A double sided silicon strip detector for radioactive nuclear beam experiments. Nucl. Instrum. Methods A 480, 448–455 (2002).  https://doi.org/10.1016/S0168-9002(01)00954-8 CrossRefGoogle Scholar
  6. 6.
    D. Hutcheon, S. Bishop, L. Buchmann et al., The DRAGON facility for nuclear astrophysics at TRIUMF-ISAC: design, construction and operation. Nucl. Instrum. Methods A 498, 190–210 (2003).  https://doi.org/10.1016/S0168-9002(02)01990-3 CrossRefGoogle Scholar
  7. 7.
    M. Wallace, M. Famiano, M.-J. van Goethem et al., The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods A 583, 302–312 (2007).  https://doi.org/10.1016/j.nima.2007.08.248 CrossRefGoogle Scholar
  8. 8.
    T. Davinson, W. Bradfield-Smith, S. Cherubini et al., Louvain–Edinburgh detector array (LEDA): a silicon detector array for use with radioactive nuclear beams. Nucl. Instrum. Methods A 454, 350–358 (2000).  https://doi.org/10.1016/S0168-9002(00)00479-4 CrossRefGoogle Scholar
  9. 9.
    Y. Blumenfeld, F. Auger, J. Sauvestre et al., MUST: A silicon strip detector array for radioactive beam experiments. Nucl. Instrum. Methods A 421, 471–491 (1999).  https://doi.org/10.1016/S0168-9002(98)01178-4 CrossRefGoogle Scholar
  10. 10.
    E. Pollacco, E. Atkin, F. Auger et al., MUST II: Large solid angle light charged particle telescope for inverse kinematics studies with radioactive beams. AIP Conf. Proc. 680, 313–316 (2003).  https://doi.org/10.1063/1.1619724 CrossRefGoogle Scholar
  11. 11.
    C.J. Lin, X.X. Xu, H.M. Jia et al., Experimental study of two-proton correlated emission from \(^{29}\)S excited states. Phys. Rev. C 80, 014310 (2009).  https://doi.org/10.1103/PhysRevC.80.014310 CrossRefGoogle Scholar
  12. 12.
    X.X. Xu, C.J. Lin, H.M. Jia et al., Investigation of two-proton emission from excited states of the odd-\(Z\) nucleus \(^{28}\)P by complete-kinematics measurements. Phys. Rev. C 81, 054317 (2010).  https://doi.org/10.1103/PhysRevC.81.054317 CrossRefGoogle Scholar
  13. 13.
    X.X. Xu, C.J. Lin, H.M. Jia et al., Observation of two-\(\alpha \) emission from high-lying excited states of 18 Ne by complete kinematics measurements. Phys. Rev. C 82, 064316 (2010).  https://doi.org/10.1103/PhysRevC.82.064316 CrossRefGoogle Scholar
  14. 14.
    X.X. Xu, C.J. Lin, H.M. Jia et al., Correlations of two protons emitted from excited states of \(^{28}\)S and \(^{27}\)P. Phys. Lett. B 727, 126–129 (2013).  https://doi.org/10.1016/j.physletb.2013.10.029 CrossRefGoogle Scholar
  15. 15.
    P.F. Bao, C.J. Lin, F. Yang et al., Development of large-area quadrant silicon detector for charged particles. Chin. Phys. C 38(12), 126001 (2014).  https://doi.org/10.1088/1674-1137/38/12/126001 CrossRefGoogle Scholar
  16. 16.
    L.J. Sun, X.X. Xu, C.J. Lin et al., A detection system for charged-particle decay studies with a continuous-implantation method. Nucl. Instrum. Methods A 804, 1–7 (2015).  https://doi.org/10.1016/j.nima.2015.09.039 CrossRefGoogle Scholar
  17. 17.
    L.J. Sun, X.X. Xu, D.Q. Fang et al., \(\beta \)-decay study of the \(T_z=-2\) proton-rich nucleus \(^{20}\)Mg. Phys. Rev. C 95, 014314 (2017).  https://doi.org/10.1103/PhysRevC.95.014314 CrossRefGoogle Scholar
  18. 18.
    X.X. Xu, C.J. Lin, L.J. Sun et al., Observation of \(\beta \)-delayed two-proton emission in the decay of 22 Si. Phys. Lett. B 766, 312–316 (2017).  https://doi.org/10.1016/j.physletb.2017.01.028 CrossRefGoogle Scholar
  19. 19.
    H. Baba, T. Ichihara, T. Ohnishi et al., New data acquisition system for the RIKEN radioactive isotope beam factory. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 616(1), 65–68 (2010).  https://doi.org/10.1016/j.nima.2010.02.120 CrossRefGoogle Scholar
  20. 20.
    J.A. Duenas, G. Pasquali, L. Acosta et al., Characterization of an NTD double-sided silicon strip detector employing a pulsed proton microbeam. IEEE Trans. Nucl. Sci. 64(9), 2551–2560 (2017).  https://doi.org/10.1109/TNS.2017.2734568 CrossRefGoogle Scholar
  21. 21.
    J. Yorkston, A.C. Shotter, D.B. Syme et al., Nucl. Instrum. Methods A 262, 353–358 (1987).  https://doi.org/10.1016/0168-9002(87)90873-4 CrossRefGoogle Scholar
  22. 22.
    B. Bruyneel, P. Reiter, A. Wiens et al., Crosstalk properties of 36-fold segmented symmetric hexagonal HPGe detectors. Nucl. Instrum. Methods A 599(2–3), 196–280 (2009).  https://doi.org/10.1016/j.nima.2008.11.011 CrossRefGoogle Scholar
  23. 23.
    J.E. Lamport, G.M. Mason, M.A. Perkins et al., Nucl. Instrum. Methods 134(1), 71–76 (1976).  https://doi.org/10.1016/0029-554X(76)90125-7 CrossRefGoogle Scholar
  24. 24.
    L.J. Sun, C.J. Lin, F. Yang et al., Development and test of double-sided silicon strip detector. At. Energy Sci. Technol. 49(2), 336–342 (2015).  https://doi.org/10.7538/yzk.2015.49.02.0336.(in Chinese)Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xin-Xing Xu
    • 1
    • 2
  • Fanurs C. E. Teh
    • 2
  • Cheng-Jian Lin
    • 1
    • 3
  • Jenny Lee
    • 2
  • Feng Yang
    • 1
  • Zhao-Qiao Guo
    • 1
    • 4
  • Tian-Shu Guo
    • 1
    • 4
  • Li-Jie Sun
    • 1
  • Xin-Zhi Teng
    • 2
  • Jia-Jian Liu
    • 2
  • Peng-Jie Li
    • 2
  • Peng-Fei Liang
    • 2
  • Lei Yang
    • 1
  • Nan-Ru Ma
    • 1
  • Hui-Ming Jia
    • 1
  • Dong-Xi Wang
    • 1
  • Sylvain Leblond
    • 2
  • Taras Lokotko
    • 2
  • Qing-Qing Zhao
    • 2
  • Huan-Qiao Zhang
    • 1
  1. 1.China Institute of Atomic EnergyBeijingChina
  2. 2.Department of PhysicsThe University of Hong KongHong KongChina
  3. 3.College of Physics and TechnologyGuangxi Normal UniversityGuilinChina
  4. 4.Beijing Kelixing Photoelectric Technology Co., Ltd.BeijingChina

Personalised recommendations