Advertisement

Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations

  • Jin-Hua Liu
  • Yue-Ming Tan
  • Yuan Wang
  • Bin Gong
  • Er Jiang
  • Yong-Fu Zhao
  • Jia-Zhen Wang
  • Shan-Xiu Cong
Article
  • 70 Downloads

Abstract

The effect of dissolved oxygen (DO) on the stress corrosion cracking (SCC) of 310S in supercritical water was investigated using slow-strain-rate tensile tests. The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface. Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.

Keywords

Supercritical water Dissolved oxygen Stress corrosion cracking Austenitic stainless steels EPMA 

References

  1. 1.
    T. Schulenberg, L.K.H. Leung, Y. Oka, Review of R&D for supercritical water cooled reactors. Prog. Nucl. Energy 77, 282–299 (2014).  https://doi.org/10.1016/j.pnucene.2014.02.021 CrossRefGoogle Scholar
  2. 2.
    D. Guzonas, R. Novotny, Supercritical water-cooled reactor materials—summary of research and open issues. Prog. Nucl. Energy 77, 361–372 (2014).  https://doi.org/10.1016/j.pnucene.2014.02.008 CrossRefGoogle Scholar
  3. 3.
    C.W. Sun, R. Hui, W. Qu et al., Progress in corrosion resistant materials for supercritical water reactors. Corr. Sci. 51(11), 2508–2523 (2009).  https://doi.org/10.1016/j.corsci.2009.07.007 CrossRefGoogle Scholar
  4. 4.
    K.J. Yin, S.Y. Qiu, R. Tang et al., Corrosion behavior of ferritic/martensitic steel P92 in supercritical water. J. Supercrit. Fluids 50(3), 235–239 (2009).  https://doi.org/10.1016/j.supflu.2009.06.019 CrossRefGoogle Scholar
  5. 5.
    R.S. Zhou, E.A. West, Z.J. Jiao et al., Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water. J. Nucl. Mater. 395, 11–22 (2009).  https://doi.org/10.1016/j.jnucmat.2009.09.010 CrossRefGoogle Scholar
  6. 6.
    A. Sáez-Maderuelo, D. Gómez-Briceño, Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water. Nucl. Eng. Des. 307, 30–38 (2016).  https://doi.org/10.1016/j.nucengdes.2016.06.022 CrossRefGoogle Scholar
  7. 7.
    G.S. Was, P. Ampornrata, G. Gupta et al., Corrosion and stress corrosion cracking in supercritical water. J. Nucl. Mater. 371, 176–201 (2007).  https://doi.org/10.1016/j.jnucmat.2007.05.017 CrossRefGoogle Scholar
  8. 8.
    P. Ampornrat, G. Gupta, G.S. Was, Tensile and stress corrosion cracking behavior of ferritic–martensitic steels in supercritical water. J. Nucl. Mater. 395(1), 30–36 (2009).  https://doi.org/10.1016/j.jnucmat.2009.09.012 CrossRefGoogle Scholar
  9. 9.
    S.X. Jin, L.P. Guo, Z. Yang et al., Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation. Mater. Charact. 62(1), 136–142 (2011).  https://doi.org/10.1016/j.matchar.2010.11.015 CrossRefGoogle Scholar
  10. 10.
    L.F. Zhang, Y.C. Bao, R. Tang, Selection and corrosion evaluation tests of candidate SCWR fuel cladding materials. Nucl. Eng. Des. 249, 180–187 (2012).  https://doi.org/10.1016/j.nucengdes.2011.08.086 CrossRefGoogle Scholar
  11. 11.
    Y. Xie, Y.Q. Wu, J. Burns et al., Characterization of stress corrosion cracks in Ni-based weld alloys 52, 52 M and 152 grown in high-temperature water. Mater. Charact. 112, 87–97 (2016).  https://doi.org/10.1016/j.matchar.2015.12.005 CrossRefGoogle Scholar
  12. 12.
    N. Muthukumar, J.H. Lee, A. Kimura, SCC behavior of austenitic and martensitic steels in supercritical pressurized water. J. Nucl. Mater. 417(1), 1221–1224 (2011).  https://doi.org/10.1016/j.jnucmat.2011.02.033 CrossRefGoogle Scholar
  13. 13.
    Y. Miwa, S. Jitsukawa, T. Tsukada, Stress corrosion cracking susceptibility of a reduced-activation martensitic steel F82H. J. Nucl. Mater. 386, 703–707 (2009).  https://doi.org/10.1016/j.jnucmat.2008.12.332 CrossRefGoogle Scholar
  14. 14.
    S.S. Hwang, B.H. Lee, J.G. Kim et al., SCC and corrosion evaluations of the F/M steels for a supercritical water reactor. J. Nucl. Mater. 372(2), 177–181 (2008).  https://doi.org/10.1016/j.jnucmat.2007.03.168 CrossRefGoogle Scholar
  15. 15.
    R. Novotny, P. Janík, S. Penttilä et al., High Cr ODS steels performance under supercritical water environment. J. Supercrit. Fluids 81, 147–156 (2013).  https://doi.org/10.1016/j.supflu.2013.04.014 CrossRefGoogle Scholar
  16. 16.
    K.H. Chang, S.M. Chen, T.K. Yeh et al., Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 °C. Corrs. Sci. 81, 21–26 (2014).  https://doi.org/10.1016/j.corsci.2013.11.034 CrossRefGoogle Scholar
  17. 17.
    Z. Shen, L.F. Zhang, R. Tang et al., SCC susceptibility of type 316Ti stainless steel in supercritical water. J. Nucl. Mater. 458, 206–215 (2015).  https://doi.org/10.1016/j.jnucmat.2014.12.014 CrossRefGoogle Scholar
  18. 18.
    A. Zeman, R. Novotny, O. Uca et al., Behavior of cold-worked AISI-304 steel in stress-corrosion cracking process: microstructural aspects. Appl. Surf. Sci. 255(1), 160–163 (2008).  https://doi.org/10.1016/j.apsusc.2008.05.301 CrossRefGoogle Scholar
  19. 19.
    J. Li, W. Zheng, S. Penttilä et al., Microstructure stability of candidate stainless steels for Gen-IV SCWR fuel cladding application. J. Nucl. Mater. 454(1), 7–11 (2014).  https://doi.org/10.1016/j.jnucmat.2014.06.043 CrossRefGoogle Scholar
  20. 20.
    P. Wu, J.L. Gou, J.Q. Shan et al., Preliminary safety evaluation for CSR1000 with passive safety system. Ann. Nucl. Energy 65, 390–401 (2014).  https://doi.org/10.1016/j.anucene.2013.11.031 CrossRefGoogle Scholar
  21. 21.
    E.A. West, G.S. Was, IGSCC of grain boundary engineered 316L and 690 in supercritical water. J. Nucl. Mater. 392(2), 264–271 (2009).  https://doi.org/10.1016/j.jnucmat.2009.03.008 CrossRefGoogle Scholar
  22. 22.
    D. Gómez-Briceno, F. Blázquez, A. Sáez-Maderuelo, Oxidation of austenitic and ferritic/martensitic alloys in supercritical water. J. Supercrit. Fluids 78, 103–113 (2013).  https://doi.org/10.1016/j.supflu.2013.03.014 CrossRefGoogle Scholar
  23. 23.
    Z.L. Zhu, H. Xu, D.F. Jiang et al., The role of dissolved oxygen in supercritical water in the oxidation of ferritic–martensitic steel. J. Supercrit. Fluids 108, 56–60 (2016).  https://doi.org/10.1016/j.supflu.2015.10.017 CrossRefGoogle Scholar
  24. 24.
    Z.P. Lu, T. Shoji, H. Xue et al., Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments. J. Nucl. Mater. 423, 28–39 (2012).  https://doi.org/10.1016/j.jnucmat.2011.12.030 CrossRefGoogle Scholar
  25. 25.
    L.T. Zhang, J.Q. Wang, Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment. J. Nucl. Mater. 446, 15–26 (2014).  https://doi.org/10.1016/j.jnucmat.2013.11.027 CrossRefGoogle Scholar
  26. 26.
    Z. Shen, L.F. Zhang, R. Tang et al., The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW. J. Nucl. Mater. 454(1), 274–282 (2014).  https://doi.org/10.1016/j.jnucmat.2014.08.006 CrossRefGoogle Scholar
  27. 27.
    H. Je, A. Kimura, Stress corrosion cracking susceptibility of candidate structural materials in supercritical pressurized water. J. Nucl. Mater. 455(1), 507–511 (2014).  https://doi.org/10.1016/j.jnucmat.2014.08.016 CrossRefGoogle Scholar
  28. 28.
    K.I. Choudhry, S. Mahboubi, G.A. Botton et al., Corrosion of engineering materials in a supercritical water cooled reactor: characterization of oxide scales on alloy 800H and stainless steel 316. Corrs. Sci. 100, 222–230 (2015).  https://doi.org/10.1016/j.corsci.2015.07.035 CrossRefGoogle Scholar
  29. 29.
    Y. Behnamian, A. Mostafaei, A. Kohandehghan et al., A comparative study on the oxidation of austenitic alloys 304 and 304-oxide dispersion strengthened steel in supercritical water at 650 °C. J. Supercrit. Fluids 119, 245–260 (2017).  https://doi.org/10.1016/j.supflu.2016.10.002 CrossRefGoogle Scholar
  30. 30.
    M. Sun, X. Wu, Z. Zhang et al., Oxidation of 316 stainless steel in supercritical water. Corrs. Sci. 51, 1069–1072 (2009).  https://doi.org/10.1016/j.corsci.2009.03.008 CrossRefGoogle Scholar
  31. 31.
    Y. Behnamian, A. Mostafaei, A. Kohandehghan et al., Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500 °C. Mater. Charact. 120, 273–284 (2016).  https://doi.org/10.1016/j.matchar.2016.09.013 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jin-Hua Liu
    • 1
    • 2
  • Yue-Ming Tan
    • 2
  • Yuan Wang
    • 1
  • Bin Gong
    • 2
  • Er Jiang
    • 2
  • Yong-Fu Zhao
    • 2
  • Jia-Zhen Wang
    • 2
  • Shan-Xiu Cong
    • 2
  1. 1.Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and TechnologySichuan UniversityChengduChina
  2. 2.Nuclear Power Institute of ChinaChengduChina

Personalised recommendations