Simulation study on characteristics of information extraction in multiple-image radiography

  • Cui Zhang
  • Xiao-Dong Pan
  • Jing-Jie Ding
  • Hong-Jie Shang
  • Zhang-Gu Chen
  • Yong-Fan Pu
  • Gong-Ping Li


Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography (MIR) based on geometrical optics approximation. Different Poisson noise levels were added to the simulation, and the results show that Poisson noise deteriorates the extraction results, with the degree of refraction > USAXS > absorption. The effects of Poisson noise are negligible when the detector’s photon counts are about 1000 ph/pixel. A wider sampling range allows more accurate extraction results, but a narrower sampling range has a better signal-to-noise ratio for high Poisson noise levels, e.g., PN(10). The sampling interval can be suitably increased with a minor impact on the extraction results for low Poisson noise levels (PN(10000)). The extraction results are incomplete because a portion of the sample-rocking curve is beyond the sampling range. This induces artifacts in the images, especially for strong refraction and USAXS signals. The artifacts are not obvious when the refraction angle and standard deviation of the USAXS are smaller than the sampling range by an order of magnitude. In general, the absorption barely affects the extraction results. However, additional Poisson noise will be generated when the sample is made of high-Z elements or has a large size due to the strong absorption. Here, the extraction results will deteriorate, and additional exposure time is required. This simulation provides important details on practical applications of MIR, with improvements in information extraction.


X-ray imaging Phase contrast Rocking curve Multiple-image radiography 


  1. 1.
    Y.Z. Zhao, E. Brun, P. Coan et al., High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. Proc. Natl. Acad. Sci. USA 109, 18290–18294 (2012). CrossRefGoogle Scholar
  2. 2.
    H.S. Rocha, G.R. Pereira, P. Faria et al., Diffraction-enhanced imaging microradiography applied in breast samples. Eur. J. Radiol. 68, S37–S40 (2008). CrossRefGoogle Scholar
  3. 3.
    C. Muehleman, J. Li, Z. Zhong et al., Multiple-image radiography for human soft tissue. J. Anat. 208, 115–124 (2006). CrossRefGoogle Scholar
  4. 4.
    P. Coan, J. Mollenhauer, A. Wagner et al., Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF. Eur. J. Radiol. 68, S41–S48 (2008). CrossRefGoogle Scholar
  5. 5.
    P. Suortti, J. Keyriläinen, W. Thomlinson, Analyser-based x-ray imaging for biomedical research. J. Phys. D Appl. Phys. 46, 494002 (2013). CrossRefGoogle Scholar
  6. 6.
    M.J. Kitchen, D.M. Paganin, K. Uesugi et al., X-ray phase, absorption and scatter retrieval using two or more phase contrast images. Opt. Express 18, 19994 (2010). CrossRefGoogle Scholar
  7. 7.
    C.H. Hu, T. Zhao, L. Zhang et al., Information extraction and CT reconstruction of liver images based on diffraction enhanced imaging. Prog. Nat. Sci. 19, 955–962 (2009). CrossRefGoogle Scholar
  8. 8.
    M.J. Kitchen, K.M. Pavlov, S.B. Hooper et al., Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging. Eur. J. Radiol. 68, S49–S53 (2008). CrossRefGoogle Scholar
  9. 9.
    X. Zhang, X.R. Yang, Y. Chen et al., Visualising liver fibrosis by phase-contrast X-ray imaging in common bile duct ligated mice. Eur. Radiol. 23, 417–423 (2013). CrossRefGoogle Scholar
  10. 10.
    D. Chapman, W. Thomlinson, Z. Zhong et al., Diffraction enhanced imaging applied to materials science and medicine. Synchrotron Radiat News 11, 4–11 (1998). CrossRefGoogle Scholar
  11. 11.
    T.M. Wang, J.J. Xu, J. Li et al., In situ study on dendrite growth of metallic alloy by a synchrotron radiation imaging technology. Sci. China Technol. Sci. 53, 1278–1284 (2010). CrossRefzbMATHGoogle Scholar
  12. 12.
    W. Zhou, K. Majidi, J.G. Brankov, Analyzer-based phase-contrast imaging system using a micro focus X-ray source. Rev. Sci. Instrum. 85, 085114 (2014). CrossRefGoogle Scholar
  13. 13.
    C. Parham, Z. Zhong, D.M. Connor et al., Design and implementation of a compact low-dose diffraction enhanced medical imaging system. Acad. Radiol. 16, 911–917 (2009). CrossRefGoogle Scholar
  14. 14.
    I. Nesch, D.P. Fogarty, T. Tzvetkov et al., The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument. Rev. Sci. Instrum. 80, 093702 (2009). CrossRefGoogle Scholar
  15. 15.
    D.J. Vine, D.M. Paganin, K.M. Pavlov et al., Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source. Appl. Phys. Lett. 91, 254110 (2007). CrossRefGoogle Scholar
  16. 16.
    A. Snigirev, I. Snigireva, V. Kohn et al., On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66, 5486–5492 (1995). CrossRefGoogle Scholar
  17. 17.
    S.W. Wilkins, T.E. Gureyev, D. Gao et al., Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335–338 (1996). CrossRefGoogle Scholar
  18. 18.
    C. David, B. Nöhammer, H.H. Solak et al., Differential x-ray phase contrast imaging using a shearing interferometer. Appl. Phys. Lett. 81, 3287 (2002). CrossRefGoogle Scholar
  19. 19.
    T. Weitkamp, A. Diaz, C. David et al., X-ray phase imaging with a grating interferometer. Opt. Express 13, 6296–6304 (2005). CrossRefGoogle Scholar
  20. 20.
    F. Pfeiffer, T. Weitkamp, O. Bunk et al., Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2, 258–261 (2006). CrossRefGoogle Scholar
  21. 21.
    P.C. Diemoz, A. Bravin, M. Langer et al., Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques. Opt. Express 20, 27670–27690 (2012). CrossRefGoogle Scholar
  22. 22.
    D. Chapman, W. Thomlinson, R. Johnston et al., Diffraction enhanced x-ray imaging. Phys. Med. Biol. 42, 2015 (1997). CrossRefGoogle Scholar
  23. 23.
    A. Maksimenko, Nonlinear extension of the x-ray diffraction enhanced imaging. Appl. Phys. Lett. 90, 154106 (2007). CrossRefGoogle Scholar
  24. 24.
    C.H. Hu, L. Zhang, H. Li et al., Comparison of refraction information extraction methods in diffraction enhanced imaging. Opt. Express 16, 16704–16710 (2008). CrossRefGoogle Scholar
  25. 25.
    L. Rigon, F. Arfelli, R.H. Menk, Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering. Appl. Phys. Lett. 90, 114102 (2007). CrossRefGoogle Scholar
  26. 26.
    O. Oltulu, Z. Zhong, M. Hasnah et al., Extraction of extinction, refraction and absorption properties in diffraction enhanced imaging. J. Phys. D Appl. Phys. 36, 2152–2156 (2003). CrossRefGoogle Scholar
  27. 27.
    E. Pagot, P. Cloetens, S. Fiedler et al., A method to extract quantitative information in analyzer-based x-ray phase contrast imaging. Appl. Phys. Lett. 82, 3421 (2003). CrossRefGoogle Scholar
  28. 28.
    M.N. Wernick, O. Wirjadi, D. Chapman et al., Multiple-image radiography. Phys. Med. Biol. 48, 3875–3895 (2003). CrossRefGoogle Scholar
  29. 29.
    Y.I. Nesterets, P. Coan, T.E. Gureyev et al., On qualitative and quantitative analysis in analyser-based imaging. Acta. Crystallogr. Sect. A 62, 296–308 (2006). CrossRefGoogle Scholar
  30. 30.
    P.C. Diemoz, P. Coan, C. Glaser et al., Absorption, refraction and scattering in analyzer-based imaging: comparison of different algorithms. Opt. Express 18, 3494–3509 (2010). CrossRefGoogle Scholar
  31. 31.
    Y.B. Wang, G.P. Li, X.D. Pan et al., Simulation of X-ray refraction information extraction using multiple image-collecting strategies. Acta Phys. Sin. 63, 150–161 (2014). (in Chinese) Google Scholar
  32. 32.
    B. Marquet, J.G. Brankov, M.N. Wernick, Noise and sampling analysis for multiple-image radiography, in Proc. 3rd IEEE International Symposium on Biomedical Imaging: Nano To Macro, Virginia, CA, United States, 2006, pp. 1232–1235.
  33. 33.
    K. Majidi, J.G. Brankov, M.N. Wernick, Sampling strategies in multiple-image radiography, in Proc. 5th IEEE International Symposium on Biomedical Imaging: Nano To Macro, Pairs, CA, France, 2008, pp. 688–691.
  34. 34.
    C.H. Hu, T. Zhao, H. Li et al., The study of phase information extraction and fusion based on diffraction enhanced imaging. J. Image Graph. 13, 1622–1628 (2008). (in Chinese) Google Scholar
  35. 35.
    Z.H. Huang, K.J. Kang, Y.G. Yang, Extraction methods of phase information for X-ray diffraction enhanced imaging. Nucl. Instrum. Methods A 579, 218–222 (2007). CrossRefGoogle Scholar
  36. 36.
    Z.Q. Chen, F. Ding, Z.F. Huang et al., Polynomial curve fitting method for refraction-angle extraction in diffraction enhanced imaging. Chin. Phys. C 33, 969–974 (2009). CrossRefGoogle Scholar
  37. 37.
    P.Y. Li, K. Zhang, W.X. Huang et al., Cosine fitting radiography and computed tomography. Chin. Phys. B 24, 068704 (2015). CrossRefGoogle Scholar
  38. 38.
    X.J. Zhao, K. Zhang, Y.L. Hong et al., A simple method of extracting multiple-information with diffraction enhanced imaging. Acta Phys. Sin. 62, 124202 (2013). (in Chinese) Google Scholar
  39. 39.
    Y.B. Wang, G.P. Li, X.D. Pan et al., An improved multiple-image radiography method extracting refraction information in analyzer-based imaging. Nucl. Instrum. Methods A 770, 182–188 (2015). CrossRefGoogle Scholar
  40. 40.
    C.Y. Chou, M.A. Anastasio, J.G. Brankov et al., An extended diffraction-enhanced imaging method for implementing multiple-image radiography. Phys. Med. Biol. 52, 1923–1945 (2007). CrossRefGoogle Scholar
  41. 41.
    L. Rigon, F. Arfelli, R.H. Menk, Generalized diffraction enhanced imaging to retrieve absorption, refraction and scattering effects. J. Phys. D Appl. Phys. 40, 3077–3089 (2007). CrossRefGoogle Scholar
  42. 42.
    J.G. Brankov, M.N. Wernick, Y. Yang et al., A computed tomography implementation of multiple-image radiography. Med. Phys. 33, 278–289 (2006). CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Cui Zhang
    • 1
  • Xiao-Dong Pan
    • 1
  • Jing-Jie Ding
    • 1
  • Hong-Jie Shang
    • 1
  • Zhang-Gu Chen
    • 1
  • Yong-Fan Pu
    • 1
  • Gong-Ping Li
    • 1
    • 2
  1. 1.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Special Function Materials and Structure Design, Ministry of EducationLanzhou UniversityLanzhouChina

Personalised recommendations