Geant4 analysis and optimization of a double crystal phoswich detector for beta–gamma coincidence detection

  • Xing Fan
  • Xian-Peng Zhang
  • Geng Tian
  • Chao-Wen Yang


In this study, a novel phoswich detector for beta–gamma coincidence detection is designed. Unlike the triple crystal phoswich detector designed by researchers at the University of Missouri, Columbia, this phoswich detector is of the semi-well type, so it has a higher detection efficiency. The detector consists of BC-400 and NaI:Tl with decay time constants of 2.4 and 230 ns, respectively. The BC-400 scintillator detects beta particles, and the NaI:Tl cell is used for gamma detection. Geant4 simulations of this phoswich detector find that a 2-mm-thick BC-400 scintillator can absorb nearly all of the beta particles whose energies are below 700 keV. Further, for a 2.00-cm-thick NaI:Tl crystal, the gamma source peak efficiency for photons ranges from a maximum of nearly 90% at 30 keV to 10% at 1 MeV. The self-absorption effect is also discussed in this paper in order to determine the carrier gas’s influence.


Geant4 Phoswich detector Beta–gamma coincidence detection Detection efficiency 


  1. 1.
    C.R. Carrigao, R.A. Heinle, G.B. Hudson et al., Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature 382, 528–531 (1996). CrossRefGoogle Scholar
  2. 2.
    Y.C. Xiang, T.S. Fan, C.F. Zhang et al., Studies on adsorption-desorption of xenon on surface of BC-404 plastic scintillator based on soaking method. Nucl. Instrum. Methods A 847, 99–103 (2017). CrossRefGoogle Scholar
  3. 3.
    A.T. Farsoni, B. Alemayehu, A. Alhawsawi et al., A phoswich detector with compton suppression capability for radioxenon measurements. IEEE Trans. Nucl. Sci. 60, 456–464 (2013). CrossRefGoogle Scholar
  4. 4.
    A.T. Farsoni, B. Alemayehu, A. Alhawsawi et al., Real-time pulse-shape discrimination and beta-gamma coincidence detection in field-programmable gate array. Nucl. Instrum. Methods A 712, 75–82 (2013). CrossRefGoogle Scholar
  5. 5.
    E. Browne, R.B. Firestone, Table of radioactive isotopes (Wiley, New York, 1986)Google Scholar
  6. 6.
    A. Ringbom, T. Larson, A. Axelson et al., SAUNA- a system for automatic sampling, processing and analysis of radioactive xenon. Nucl. Instrum. Methods A 508, 542–553 (2003). CrossRefGoogle Scholar
  7. 7.
    J.P. Fontaine, F. Pointurier, X. Blanchard et al., Atmospheric xenon radioactive isotope monitoring. J. Environ. Radioact. 72, 129–135 (2004). CrossRefGoogle Scholar
  8. 8.
    P.L. Reeder, T.W. Bowyer, Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy. Nucl. Instrum. Methods A 408, 582–590 (1998). CrossRefGoogle Scholar
  9. 9.
    T.W. Bowyer, K.H. Abel, C.W. Hubbard et al., Automated separation and measurement of radioxenon for the comprehensive test ban treaty. J. Radioanal. Nucl. Chem. 235, 77–82 (1998). CrossRefGoogle Scholar
  10. 10.
    S. Usuda, H. Abe, A. Mihara, Phoswich detectors combining doubly or triply ZnS(Ag), NE102A, BGO and/or NaI(Tl) scintillators for simultaneous counting of α, β and γ rays. Nucl. Instrum. Methods A 340, 540–545 (1994). CrossRefGoogle Scholar
  11. 11.
    S. Usuda, S. Sakurai, K. Yasuda, Phoswich detectors for simultaneous counting of α-, β (γ)-rays and neutrons. Nucl. Instrum. Methods A 388, 193–198 (1997). CrossRefGoogle Scholar
  12. 12.
    T. White, W. Miller, A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy. Nucl. Instrum. Methods A 422, 144–147 (1999). CrossRefGoogle Scholar
  13. 13.
    N.L. Childress, W.H. Miller, MCNP analysis and optimization of a triple crystal phoswich detector. Nucl. Instrum. Methods A 490, 263–270 (2002). CrossRefGoogle Scholar
  14. 14.
    Y. Eisen, B.H. Erkkila, R.J. Brake et al., A new method for measuring beta spectra and doses in mixed beta-photon fields. Nucl. Instrum. Methods A 238, 187–190 (1985). CrossRefGoogle Scholar
  15. 15.
    H.H. Hsu, J. Chen, H. Ing et al., Skin dose measurement with microspec-2™. Nucl. Instrum. Methods A 412, 155–160 (1998). CrossRefGoogle Scholar
  16. 16.
    P. Chandrikamohan, T.A. DeVol, Comparison of pulse shape discrimination methods for phoswich and CsI: Tl detectors. IEEE Trans. Nucl. Sci. 54, 398–403 (2007). CrossRefGoogle Scholar
  17. 17.
    P. Mekarski, W. Zhang, K. Ungar et al., Monte Carlo simulation of a PhosWatch detector using Geant4 for xenon isotope beta–gamma coincidence spectrum profile and detection efficiency calculations. Appl. Radiat. Isot. 67, 1957–1963 (2009). CrossRefGoogle Scholar
  18. 18.
    N.L. Childress, W.H. Miller, MCNP analysis and optimization of a triple crystal phoswich detector. Nucl. Instrum. Methods A 490, 263–270 (2002). CrossRefGoogle Scholar
  19. 19.
    S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xing Fan
    • 1
    • 2
  • Xian-Peng Zhang
    • 3
  • Geng Tian
    • 3
  • Chao-Wen Yang
    • 1
    • 2
  1. 1.Department of Nuclear Engineering and Technology, College of Physics Science and TechnologySichuan UniversityChengduChina
  2. 2.Key Laboratory of Radiation Physics and Technology, Ministry of EducationSichuan UniversityChengduChina
  3. 3.Northwest Institute of Nuclear TechnologyXi’anChina

Personalised recommendations